11-96-01 II-A-158

AIRCRAFT FLIGHT PROCEDURES PROGRAM: MODIFIED COMPUTER PROGRAM MODEL - USER'S MANUAL -

BY: LARRY A. RONK

DECEMBER 1931

PREPARED UNDER:

Contract No. 63-01-6267 Task Order TFP-4

For the

()

OFFICE OF NOISE ABATEMENT AND CONTROL U.S. ENVIRONMENTAL PROTECTION AGENCY WASHINGTON, D.C. 20460

AIRCRAFT FLIGHT PROCEDURES PROGRAM: MODIFIED COMPUTER PROGRAM MODEL - USER'S MANUAL -

BY: LARRY A, RONK

DECEMBER 1931

PREPARED UNDER: Contract No. 63-01-6267 -Task Order TFP-4

.

6

11.00

FOR THE

OFFICE OF NOISE ABATEMENT AND CONTROL U.S. ENVIRONMENTAL PROTECTION AGENCY WASHINGTON, D.C. 20460

This report has been approved for general availability. The contents of this report reflect the views of the contractor, who is responsible for the facts and the accuracy of the data presented herein, and do not necessarily reflect the official views or policy of EPA. This report does not constitute a standard, specification, or regulation.

والمراجع والمراجع والمتحد والمحمد والمحم

4. Title and Sublitie	5	Raport Date
Aircraft Flight Procedures Program: Modified Com Program Model - User's Manual -	outer 🖌	December 1981
7. Author(s) Larry A. Ronk	 	Performing Organization Rept. No.
9. Performing Organization Name and Address	10	2. Project/Task/Work Unit No.
ORI, Inc.	<u>[T</u>	ask Order TFP-4
1400 Spring Street	11	- Contract(C) or Grant(G) No.
Silver Spring, Maryland 20910	(C	5 EFA 68-01-0207
· ·	(G)
12. Sponsoring Organization Name and Address	. 13	L Type of Report & Period Coverad
Office of Noise Abatement and Control		Final
Washington, D.C. 20460	14	•
This report, as well as a computer tape of the pro NTIS. 16 Abstract (Limit: 200 words)	ograms and data	bases are available from
construct aircraft flight paths and perform operational procedures. The computer model fundamental aircraft and engine performance operational characteristics applicable to s	ance schedules algorithms were relationships (pecific aircraft	for specified e derived from or from t types.
	lo data generate	ed by the model
are compatible with the input data requirem USAF's NOISEMAP.	le data generate ents of the FAA	ed by the model 's INM and the
are compatible with the input data requirem USAF's NOISEMAP. The flight procedures model was develo IBM 370/168MP computer system. The program language and executed interactively under T	le data generate ents of the FAA oped and installe was written in SO.	ed by the model 's INM and the ed on the EPA's FORTRAN IV
are compatible with the input data requirem USAF's NOISEMAP. The flight procedures model was develo IBM 370/168MP computer system. The program language and executed interactively under T	le data generate ents of the FAA oped and installe was written in SO.	ed by the model 's INM and the ed on the EPA's FORTRAN IV
are compatible with the input data requirem USAF's NOISEMAP. The flight procedures model was develo IBM 370/168MP computer system. The program language and executed interactively under T	le data generate ents of the FAA oped and installe was written in SO.	ed by the model 's INM and the ed on the EPA's FORTRAN IV
The flight procedures model was developed and executed interactively under T The flight procedures model was developed and executed interactively under T The flight executed interactively under T The flight Procedures Computer Model Commercial Flight Procedures Computer Model Integrate Flight Profile Integrate Performance Schedules Hentifiers/GeoreEnded Terms	le data generate ents of the FAA ped and installe was written in SO.	ed by the model 's INM and the ed on the EPA's FORTRAN IV rcraft INM)
 are compatible with the input data requirem USAF's NOISEMAP. The flight procedures model was develous and anguage and executed interactively under The program language and executed interactively u	le data generate ents of the FAA pped and installe was written in SO.	ed by the model 's INM and the ed on the EPA's FORTRAN IV rcraft INM)
<pre>are compatible with the input data requirem USAF's NOISEMAP. The flight procedures model was develo IBM 370/168MP computer system. The program language and executed interactively under T language and executed interactively under T </pre> 7. Document Analysis a. Descriptors Flight Procedures Computer Model Commercia Flight Path Flight Profile Performance Schedules b. Identifiers/Open-Ended Terms	le data generate ents of the FAA ped and installe was written in SO.	ed by the model 's INM and the ed on the EPA's FORTRAN IV rcraft INM)
The flight path and performance schedulare compatible with the input data requirem USAF's NOISEMAP. The flight procedures model was develous interactively under The program language and executed interactivel	The data generate ants of the FAA oped and installe was written in SO. Al Aircarrier Ai ad Noise Model (B. Security Class (This Rep	ed by the model 's INM and the ed on the EPA's FORTRAN IV rcraft INM) 21. No. et Pages
The flight procedures model was developed are compatible with the input data requirem USAF's NOISEMAP. The flight procedures model was developed and executed interactively under T language flight Path Integrate Integrate Performance Schedules L Identifiers/Open-Ended Terms Availability flightment: Release Unlimited	The data generate ents of the FAA oped and installe was written in SO. A Aircarrier Ai d Noise Model (B. Security Cless (This Rep <u>Unclassified</u> A Security Cless (This Rep	ed by the model 's INM and the ed on the EPA's FORTRAN IV rcraft INM) eru 21. No. of Pages
are compatible with the input data requirer USAF's NOISEMAP. The flight procedures model was develo IBM 370/168MP computer system. The program language and executed interactively under T 7. Document Analysis a. Descriptors Flight Procedures Computer Model flight Procedures Computer Model flight Path Flight Profile Performance Schedules b. identifiers/Open-Ended Terms Availability Statement: Release Unlimited	ents of the FAA pped and installe was written in SO. Al Aircarrier Ai d Noise Model (Unclassified & Security Cleas (This Page Unclassified	ed by the model 's INM and the ed on the EPA's FORTRAN IV rcraft INM) erU 21. No. of Pages a) 22. Price

DEPT DODY AVIAN ADV

FOREWARD

The user is assumed to be familiar with the following documents:

National Computer Center - IBM System,
 "NCC - IBM WYLBUR Guide"

1

63

如此,如此如此不能是有一个就是这些时间的最佳的人们的时候就是 有效的数据的 有限的复数形式 机合合物

مند ماند. مند ماند. وروان در از از از از ا

- U.S. Environmental Protection Agency, "NCC - IBM User's Guide"
- IBM, "OS/VS2 TSO Command Language Reference Manual," GC28-0645-4

This manual describes the procedures for using the modified flight procedures model developed by ORI, Inc. as it existed on the NCC computer system on July, 1981.

...

an and a state of the state of the

TABLE OF CONTENTS (CONT.)

ł

and the second second

63

J

(^{area}

						Page
APPENDIX	B:	LOGON AND LOGOFF PROCEDURES	FOR THE	EPA'S IB	Ч	
		COMPUTER SYSTEM AT NCC				8-1

111

والمرجان والمعران والمرجوع والمراجع

المراجع المراجع

THE PREVIOUS DOCUMENT(S) MAY HAVE BEEN FILMED INCORRECTLY...

B&B Information & Image Management 300 Prince George's Boulevard Upper Marlboro, Maryland 20772 (301) 249-0110

		Page	
	FORWARD	i	\sim
	LIST OF FIGURES	tv	{
	LIST OF TABLES	v	•
	SYMBOLS AND ABBREVIATIONS	vi	
I.	INTRODUCTION	1-1	
	BACKGROUND	1-1	
	OBJECTIVES	1-2	
II.	DESCRIPTION OF THE MODIFIED FLIGHT PROCEDURES MODEL	2-1	
	TAKEOFF OPERATIONS	2-3	
	APPROACH AND LANDING OPERATIONS	2-9	
	MODEL INPUTS	2-11	
	MODEL OUTPUTS	2-12	
	AIRCRAFT PERFORMANCE ALGORITHMS	2-13	
	ATMOSPHERIC PARAMETERS	2-18	
III.	PROGRAM EXECUTION	3-1	
	MODEL DESIGN	3-1	
	HOW TO RUN THE FLIGHT PROCEDURES MODEL	3-1	
	REFERENCES	R-1	
APPENDIX	A: COMPUTATIONAL ALGORITHMS USED BY THE FLIGHT PROCEDURES		Court !!
	MODEL	A-1	

TABLE OF CONTENTS

.

•

.

:

.

,

- ----

والمرجد فبأريب ليماد والمتحية المعاقبة

.

		Page
APPENDIX B:	LOGON AND LOGOFF PROCEDURES FOR THE EPA'S IBM	
	COMPUTER SYSTEM AT NCC	B-1

. . . .

DECT COOV AUAII AOI

1

ſ<u>,</u>

LIST OF FIGURES

Figure		Page	
2-1	Forces Acting on the Aircraft During Turning Operations (Normal to the Flight Path Axis)	2-15	
2-2	Forces Acting on the Aircraft During Turning Operations (In the Horizontal Plane)	2-16	
3-1	Basic Structure of the Modified Flight Procedures Model.	3-2	
3-2	Generalized Flight Path and Flight Track Section and Definition of Input and Output Parameters	3-10	
3-3	Takeoff Flight Profile and Procedure Description for the ALPA/NWA Min. Procedure	3-31	
3-4	Flight Profile and Procedure Description for a Typical Approach and Landing Operation	3-33	

1 v

LIST OF TABLES

.

3774 2274 1111

0

Table		Page
2-1	Aircraft/Engine Identification and Selection	2-2
2-2	Range of Airport, Aircraft, and Engine Operational Parameters for the Aircraft Types Considered in the Flight Procedures Model	2-4,
3-1	Takeoff Flight Procedure Options	3-11
3-2	Approach and Landing Flight Procedure Options	3-25
3-3	Takeoff Flight Path and Performance Schedule for a 4- Engine, High-by-Pass Ratio Wide Body Aircraft Type; ALPA/ NWA Min. Procedure	3-32
3-4	Approach and Landing Flight Path and Performance Schedule for a 4-Engine, High-by-Pass Ratio Wide Body Aircraft Type; Typical Procedure	3-34

v

1121

SYMBOLS AND ABBREVIATIONS

Abbreviation	Units	Description	
A/C	-	Aircraft	\cap
ALT	feet	Airport altitude above sea-level	
ARPT	-	Airport	
CT	ft/sec	Speed of sound	
с _р	-	Aerodynamic drag coefficient	
C,	-	Aerodynamic lift coefficient	
a	pounds	Aircraft drag	
DS	feet	Horizontal distance between flight path section end points	
E	-	Aircraft engine	
EAS	knots,ft/sec	Equivalent air speed	
EPR	-	Engine-Pressure-Ratio	. •
EPA	-	Environmental Protection Agency	
°F	deg	Atmospheric temperature in degrees Fahrenheit	()

٧i

تمأر والرزرين وترتل ودرر ويستاد بالتوقعا ماحا فتحم

Symbol/ Abbreviation	<u>Units</u>	Description
FAA	-	Federal Aviation Administration
F n	pounds	Average total net thrust
F _{n1}	pounds	Average net thrust per engine at H1.
\overline{F}_{n_2} pounds Average net thrust per engine		Average net thrust per engine at H2
FPM ·	ft/min.	Aircraft rate-of-climb or descent
fpm	ft/min.	Aircraft rate-of-climb
g	ft/sec/sec	Acceleration of gravity
HAA	feet	Height above airport
HBPR	-	High-by-pass ratio
HPALT	feet	Geopotential pressure altitude
H1	feet	Aircraft's altitude above the airport at section end point 1
H2	feet	Aircraft's altitude above the airport at section end point 2
IBM	•	International Business Machines Corporation
INM	-	Integrated Noise Model computer program
Ък	deg.	Atmospheric temperature in degrees kelvin
KEAS	knots	Equivalent air speed
or (eas	knots	Equivalent air speed
lbs	pounds	One thousand pounds
TAS	knots,ft/sec	True air speed
	pounds	Aircraft lift
.BPR	-	Low-by-pass ratio

F

.

i

(....

er Para

vii

..

Symbol/ Abbreviation	<u>Units</u>	Description	
LR	^O K/foot	First-layer standard lapse rate	
MACH	-	Mach number	
MCT	pounds	Maximum climb thrust	
Ν	-	Number of engines operating	
N1	rpm	Low pressure fan rotational speed	
NB	-	Narrow body	
NCC	-	National Computer Center	
NOISEMAP	-	NOISEMAP computer program	
ONAC .	-	Office of Noise Abatement and Control	
R	feet	Flight track turn radius	
Re	, feet	Equivalent earth radius	And the second s
RPM .	rpm	Engine rotational speed	
S _W	sq. feet	Reference wing area	
T _o	٥ĸ	Sea-level standard temperature	
ТАРТК	°ĸ	Airport temperature	
TEMP	°F	Airport temperature	
TEMP F	°F	Temperature	
ТЕМРК	°K .	Temperature	
ТНРК	°ĸ	Non-standard ambient temperature	
ТОТ	pounds	Total net takeoff thrust per engine	
TRAT	-	Ratio between the airport's actual ambient temperature and the sea- level standard temperature	
TSO	-	Time Sharing Option	
TSTA	°ĸ	Standard ambient temperature	()

ì

0707 000V 1V11 1-1

1

••

^t FR	sec	Flap retraction time
USAF	-	United States Air Force
V	ft/sec	Aircraft velocity
Ŷ	ft/sec/sec	Aircraft acceleration
Ve	ft/sec	Equivalent air speed
Vs	knots	Equivalent air speed at stall
۷ _T	ft/sec	True air speed
VT1	ft/sec	True air speed at H1
VT2	ft/sec	True air speed at H2 -
٧Z	fpm	Rate-of-climb
V2	knots	One-engine out takeoff safety speed
V35	knots	Equivalent air speed at 35 feet HAA
v ₁	KEAS , KTAS	Aircraft air speed at H1
V ₂	KEAS , KTAS	Aircraft air speed at H2
W	pounds	Aircraft weight
WB	-	Wide-body
α _B	degrees	Aircraft body angle of attack
Y	degrees	Aircraft flight path angle
ΔZ	feet	Change in vertical altitude from H1 to H2
δ	-	Ratio of ambient pressure to sea level reference pressure of 33.73 inches of mercury
δ _F	degrees	Aircraft flap position or setting

•

(......

1x

an and the and a standard straight.

. ...

Symbol/ Abbreviation	Units	Description
°.	-	Altitude pressure ratio at H1
٥ ₂	-	Altitude pressure ratio at H2
۵ ₃	-	Altitude pressure ratio at (H1 + H2)/2
o	-	Altitude temperature ratio
ିc	deg	Flight track turn angle
°c ·	radians/sec	Aircraft turning rate
ΘT ₂	-	Ratio of the total temperature at the fan stage face to sea level reference temperature of 77 ⁰ F
p	<u>lbs-sec²</u> ft ⁴	Ambient air density
ρ _o	<u>lbs-sec²</u> ft ⁺	Air density at sea level
σ	-	'Altitude density ratio
φ	deg	Aircraft banking angle

х

(~_) (~_)

I. INTRODUCTION

BACKGROUND

(WESTER

Under Task 38 of EPA/ONAC Level-of-Effort Contract No. 68-01-6151, ORI, Inc. identified and collected performance and operational data and information required to construct flight paths and performance schedules for selected commercial aircraft types powered by turbofan engines.¹ As part of the task effort, ORI, Inc. also evaluated available flight procedure computer programs to identify existing analytical and computer programming work which could be used in developing a modified computer program model to generate aircraft flight path and performance schedule data which are compatible with the input data requirements of the FAA's INM and the USAF's NOISEMAP.^{2,3}

In a follow-on task, ORI, Inc. developed modified analytical algorithms for constructing aircraft flight paths and performance schedules for specified operational procedures. These algorithms were derived from fundamental aircraft and engine performance relationships or from operational characteristics applicable to specific aircraft types. Based on these algorithms, a computer model was developed and installed on the EPA's IBM 360/ 370 computer system (NCC). The program was written in FORTRAN IV language and executed interactively under TSO.

In developing the modified flight procedures model, it was found that little of the existing analytical and computer programming work could be

utilized. In general, the structure of the existing models and the models' algorithms were not compatible with the performance and operational data and information requirements described in Reference 1. In addition, the "simplified" relationships used in most of the existing models to describe the aircraft's performance and operational characteristics could not provide the specialized capabilities which were identified as requirements of the modified flight procedures model. Furthermore, incompatibility between the EPA's computer system and the systems used to operate many of the existing flight procedures models prevented the use of much of the existing computer programming work in the development of the modified flight procedures program.

OBJECTIVES

The objectives of this program effort were to: 1) develop modified analytical algorithms for constructing aircraft flight path and performance schedules for specific operational procedures, 2) develop a computer program model based on these modified analytical algorithms such that the output is compatible with the input data requirements for FAA's INM and the USAF's NOISÉMAP, 3). install the computer program model on the EPA's IBM 360/370 computer system and demonstrate the operation of model, and 4) prepare a user's manual which provides a detailed description of the use and application of the computer program model. This report describes the work performed in accomplishing these objectives.

Second Second Second

II. DESCRIPTION OF THE MODIFIED FLIGHT PROCEDURES MODEL

The modified flight procedures model can be used to construct aircraft flight paths and performance schedules for takeoff and for approach and landing operations performed in accordance with specified flight procedures. The aircraft types considered in the model are representative of all types of in-service commercial aircarrier aircraft powered by low-by-pass ratio (LBPR) and high-by-pass ratio (HBPR) turbofan engines. The current fleet of "narrow body" aircraft types are powered by LBPR engines and the "wide body" aircraft types are powered by HBPR engines. The following six generic aircraft classes are represented:

2-Engine LBPR-Narrow Body (2E-LBPR-NB)

(²²¹)

いたいたいに、おけたアファの利用を見たたいとない。た

M. L. Salaria

ファンチ ンンフィー・・・・・

3-Engine LBPR-Narrow Body (3E-LBPR-NB)

4-Engine LBPR-Narrow Body (4E-LBPR-NB)

2-Engine HBPR-Wide Body (2E-HBPR-WB)

3-Engine HBPR-Wide Body (3E-HBPR-WB)

4-Engine HBPR-Wode Body (4E-HBPR-WB)

Table 2-1 presents a listing of specific aircraft types which are representative of the above generic classes and identifies the aircraft selected to represent each generic class. The engines used to power the selected aircraft are also presented on Table 2-1.

2-1

المراجع المراجع. ويسترك المراجع المراجع المراجع المراجع المحمد المراجع المحمد المحمد المحمد المراجع المحمد المراجع الم

Representative Aircraft Types	Aircraft Selected To Represent Generic Class	Engine Used to Power Selected Aircraft
737/DC-9/BAC-111	737-200 ADV.	JT8D-15
727	727-200 ADV.	JT8D-15
707/DC-8/720	707-300 B	JT3D-3B/C
A300/757/767	*	JT9D-20
DC-10/L-1011	DC-10-10	CF6-6D
747	747-200	JT9D-7
	Representative Aircraft Types 737/DC-9/BAC-111 727 707/DC-8/720 A300/757/767 DC-10/L-1011 747	Representative Aircraft Types Aircraft Selected To Represent Generic Class 737/DC-9/BAC-111 737-200 ADV.' 727 727-200 ADV.' 707/DC-8/720 707-300 B A300/757/767 * DC-10/L-1011 DC-10-10 747 747-200

TABLE 2-1 AIRCRAFT/ENGINE IDENTIFICATION AND SELECTION

*A pseudo aircraft has been used to represent the generic class of 2-engine HBPR-wide body aircraft types. Aircraft performance and operational data and information for the pseudo aircraft were based on actual data and information for the DC-10-40. The pseudo aircraft is powered by two (2) JT9D-20 engines.

(____)

٢

(2)

The range of airport, aircraft, and engine operational parameters for the aircraft types considered in the flight procedures model are shown on Table 2-2. The maximum operating speed allowed by the model for all aircraft types is limited to 250 KEAS. The minimum operating speed is considered to be the aircraft stall speed (Vs). The stall speeds are functions of flap setting and aircraft weight and can be determined from the operational data presented in Reference 1.

A detailed description of the flight procedures model is presented in the following sections.

TAKEOFF OPERATIONS

100000

 The takeoff operations which may be modeled include the following:

- Acceleration from brake release to point of lift-off with constant flap and thrust settings; landing gear extended
- Acceleration from point of lift-off to 35 feet height above airport (HAA) with constant flap and thrust settings; landing gear extended
- Acceleration from 35 feet HAA to 400 feet HAA with constant flap and thrust settings; initiate and complete landing gear retraction
- Climb at constant equivalent air speed (EAS), and constant flap and thrust settings; landing gear retracted
- Acceleration with changing flap setting, and with a constant thrust setting; landing gear retracted
- Acceleration with constant flap and thrust settings; landing gear retracted
- Acceleration with constant flap setting and with changing thrust setting; landing gear retracted

المحاجي المناج فالمراجل وأوقوهم والوجر والمتحمد المستوحيه

and a construction of the second fill

TABLE 2-2 RANGE OF AIRPORT, AIRCRAFT, AND ENGINE OPERATIONAL PARAMETERS FOR THE AIRCRAFT TYPES CONSIDERED IN THE FLIGHT PROCEDURES MODEL

	AIRPORT PARAMETERS		AIRCRAFT PARAMETERS				
Aircraft	Pressure Altitude	Temp. Range, or	Flap Positions,	<u>Degrees, Sr</u>	Weight Range,	Kibs, W	Climb Speeds Above V2,
туре	Range, reet	Degrees, r	Idkeoff	Approacn	Takeott	Approach	KIIOLS INCAS
2E-LBPR-NB	0 to 6000	30 to 100	1,2,5,10,15,25	0,1,2,5,10,15 25,25D,30D,40D	70 to 125	70 to 110	15,20,30
3E-LBPR-NB	0 to 6000	30 to 100	5,15,20,25	0,2,5,15,20,25, 250,300,40D	110 to 230	100 to 160	10,20,30
4E-LBPR-NB	0 to 6000	30 to 100	14	0,14,25,25D 40D,50D	190 to 330	160 to 260	10,20,30
2E-HBPR-WB	0 to 6000	40 to 95	5,15,25	0,5,15,25,35 50,35D,50D	198.3 to 360	190 to 330	10,20,30
3E-HBPR-WB	0 to 6000	40 to 95	0,10,20	0,5,10,20,35, 50,35D,50D	260 to 440	240 to 380	10,20,30
4E-HBPR-WB	0 to 6000	30 to 100	10,20	0,1,5,10,20 20D,25D,30D	500 to 800	450 to 650	10,20,30

 \mathcal{U} Landing gear up for approach flaps except for those designated with a D.

 $\sum_{i=1}^{n}$

ロックイ フラフミ トニトニ

 $\left(\sum_{i=1}^{n+1} \right)$

(_____)

.

an constitution of a construction and a second or the second of the second of the second second second second s

,

TABLE 2	2-2 (Continue	d)
---------	-------	----------	----

		ENGI	NE PARAMETERS			
	Total Net Takeoff Thrust (TOT)			Maximum Climb Thrust Engine-Pressure-Ratio (EPR) Setting or Low Pressure Fan Speed Setting (N1)		
Aircraft Type	Pressure Altitude <u>Range, Feet</u>	True Air Speed Range, Knots, KTAS	Ambient Temp. Range Degrees, F	Pressure Altitude <u>Range, Feet</u>	Ambient Temp. Range, Degrees, F	
2E-LBPR-NB	0 to 6000	100 to 300	0 to 122	0 to 30000	-4 to 122	
3E-LBPR-NB	0 to 6000	100 to 300	0 to 100	0 to 30000	-4 to 122	
4E-LBPR-NB	0 to 6000	0 to 300	-6.5 to 120	0 to 30000	-4 to 113	
2E-HBPR-WB	0 to 8000	0 to 300	20 to 100	0 to 30000	-5 to 103	
3E-HBPR-WB	0 to 8000	0 to 300	20 to 100	0 to 30000	0 to 100	
4E-HBPR-WB	0 to 6000	100 to 300	-6.5 to 103	0 to 30000	-5 to 103	

•

فالمتحافظ وحجرتهم فينعك فككبه والقابر سفته فستكمط لأفاط تعجاجه

2-5

	Refer	red Net Thrust, (Referred Low Pressure Fan Speed, (N1/√0T2), RPM		
Aircraft Type	EPR Range	N1/ /OT2 Range, RPM	MACH Number Range	EPR Range	MACH Number Range
2E-LBPR-NB	1.05 to 2.40	-	0.0 to 0.5	-	-
3E-LBPR-NB	1.00 to 2.40	i	0.0 to 0.5	-	
4E-LBPR-NB	1.00 to 2.00		0.0 to 0.5	-	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~
2E-HBPR-WB	1.00 to 1.55	r, g - 1 ₀	0.0 to 0.5	1.00 to 1.65	0.0 to 0.5
3E-HBPR-WB	<u> </u>	2060 to 3776	0.0 to 0.5		· · · · · · · · · · · · · · · · · · ·
4E-HBPR-WB	1.00 to 1.75	-	0.1 to 0.5	1.00 to 1.75	0.1 to 0.5

TABLE 2-2 (Continued)

,

ENGINE PARAMETERS

 $\left(\begin{array}{c} \end{array} \right)$

 \bigcirc

- Climb at constant EAS and constant flap setting, and with changing thrust setting; landing gear retracted
- Climb at constant EAS with changing flap setting, and with constant thrust setting; landing gear retracted.

These nine takeoff operations can be used to model the takeoff flight procedures which are currently used or capable of being used in routine departures.* Each procedure consists of three flight path segments which are identified by their principal operational activities. The segments are defined as:

- Ground-roll and initial climb
- Thrust reduction
- Normal climb.

Each of these three segments may be comprised of several sections in which the aircraft performs various operational activities such as landing gear retraction, flap retraction, acceleration, and thrust adjustment. The location at which these activities are initiated and the sequence of their occurrence will depend on the specific flight procedure employed.

The operational procedures performed during the ground-roll and initial climb to 400 feet HAA are identical for all aircraft types considered in the model, i.e., constant thrust setting (all-engine takeoff thrust), constant flaps, and landing gear retracted by 400 feet HAA. The only variations to these operational parameters which the model will allow include the initial takeoff flap setting and initial climb speed. Starting with the section beginning at 400 feet HAA, eight takeoff operational procedures, or options, may be used to construct the complete flight path and performance schedule. Each of the eight options may be used to define a straight or curved flight path section. The following is a brief description of these options.

*A detailed description of these procedures is presented in References 1 and 4.

Option Number 1

This option defines a flight operation performed at constant equivalent speed, constant flap setting, constant thrust setting, and landing gear retracted. The average flight path angle is computed from the following flight path and performance variables: (1) height above airport, (2) true air speed, (3) average total net thrust, (4) flap setting, and (5) aircraft weight.

Option Number 2

This option defines a flight operation performed at constant equivalent speed, constant flap setting, constant thrust setting, and landing gear retracted. The average total net thrust is computed from the following flight path and performance variables: (1) height above airport, (2) true air speed, (3) rate-of-climb, (4) flap setting, and (5) aircraft weight.

Option Number 3

This option defines a flight operation performed at constant equivalent speed, constant flap setting, constant thrust setting, and landing gear retracted. The average total net thrust is computed from the following flight path and performance variables: (1) height above airport, (2) true air speed, (3) average flight path angle, (4) flap setting, and (5) aircraft weight.

Option Number 4

This option defines a flight operation performed at constant equivalent speed, constant flap setting, constant thrust setting, and landing gear retracted. The average flight path angle is computed from the following flight path and performance variables: (1) height above airport, (2) horizontal distance between flight path section end points, (3) true air speed, (4) average total net thrust, (5) flap setting, and (6) aircraft weight.

Option Number 5

This option can be used to define the following three (3) flight operations: a) acceleration with constant flap setting, and constant thrust setting, b) constant equivalent speed, constant flap setting, and changing

and services and the

thrust setting, c) acceleration with constant flap setting and changing thrust setting. All three flight operations are performed with the aircraft's landing gear retracted. The average flight path angle is computed from the following flight path and performance variables: (1) height above airport, (2) true air speed, (3) average total net thrust, (4) flap setting, (5) aircraft weight, and (6) rate-of-climb (optional for flight operations a and c).

Option Number 6

This option defines a flight operation performed with aircraft acceleration, constant flap setting, constant thrust setting, and landing gear retracted. The average flight path angle is computed from the following flight path and performance variables: (a) height above aiprort, (2) true air speed, (3) average total net thrust, (4) flap seeting, (5) aircraft weight, and (6) rate-of-climb (optional).

Option Number 7

This option defines a flight operation performed at constant equivalent speed, constant thrust setting, changing flap setting, and landing gear retracted. The average flight path angle is computed from the following flight path and performance variables: (1) height above airport, (2) true air speed, (3) average total net thrust, (4) flap setting, (5) flap retraction time, and (6) aircraft weight.

Option Number 8

÷,

(_____

This option defines a flight operation performed with aircraft acceleration, constant thrust setting, changing flap.setting, and landing gear retracted. The average flight path angle is computed from the following flight path and performance variables: (1) height above airport, (2) true air speed, (3) average total net thrust, (4) flap setting, (5) flap retraction time, (6) aircraft weight, and (7) rate-of-climb. APPROACH AND LANDING OPERATIONS

The approach and landing flight operations which may be modeled include the following:

and the second secon

- Descend at constant EAS, and constant flap and thrust settings; landing gear retracted or extended
- Descend at constant EAS or deceleration with constant flap setting and with changing thrust setting; landing gear retracted or extended
- Level flight at constant EAS, and constant flap and thrust settings; landing gear retracted or extended
- Level flight deceleration with constant flap setting and with changing thrust setting; landing gear retracted or extended.

The flight procedures model provides an option for each of the above approach and landing operations. Each of the four options may be used to define a straight or curved flight path section. Also, flap settings can be changed at section end points to represent "flap management" approach procedures. A description of these options is presented below.

Option Number 9

This option defines a flight operation performed at constant equivalent air speed, constant flap setting, constant thrust setting, and landing gear retracted or extended. The average flight path angle is computed from the following flight path and performance variables: (1) height above airport, (2) true air speed, (3) total net thrust, (4) flap setting, and (5) aircraft weight.

Option Number 10

This option defines a flight operation performed at constant equivalent air speed or aircraft deceleration with constant flap setting, changing thrust, setting, and landing gear retracted or extended. The average total net thrust is computed from the following flight path and performance variables: (1) height above airport, (2) true air speed, (3) rate-of-descent, (4) flap setting, and (5) aircraft weight.

Option Number 11

This option defines a flight operation performed at constant

(__)

and the state of the

equivalent air speed or aircraft deceleration, with constant flap setting, changing thrust setting, and landing gear retracted or extended. The average total net thrust is computed from the following flight path and performance variables: (1) height above airport, (2) true air speed, (3) flight path angle, (4) flap setting, and (5) aircraft weight.

Option Number 12

This option can be used to define the following two (2) flight operations: a) level flight at constant equivalent air speed, constant flap setting, and constant thrust setting, or b) level flight deceleration with constant flap setting, and changing thrust setting. Both flight operations can be performed with the landing gear retracted or extended. The average total net thrust is computed from the following flight path and performance variables: (1) height above airport, (2) true air speed, (3) horizontal distance traveled during the flight operation, (4) flap setting, and (5) aircraft weight.

MODEL INPUTS

values terrais

¥.,

The flight procedures model uses an extensive aircraft and engine performance data base to construct flight path and performances schedules. Most of these data are stored internally on data base files which are read by the main program prior to program execution. The stored input data used by the model for both takeoff and approach and landing operational procedures include the following:

- Aircraft reference wing area
- All-engine distance from brake release to 35 feet HAA and 400 feet HAA over a wide range of aircraft weights, flap settings, airport temperatures, and airport pressure altitudes
- Equivalent air speeds for takeoff over a wide range of aircraft weights and flap settings*

*These include the all-engine EAS at 35 feet HAA (V35) and the one-engine out takeoff safety EAS (V2).

2-11

and a second second

- Engine thrust parampters over a full range of takeoff and approach and landing conditions and thrust requirements. These parameters include: (a) all-engine net thrust as a function of air speed, temperature, and altitude (for takeoff operations), (b) referred (or corrected) net thrust (Fn/ δ) as a function of enginepressure-ratio (EPR) and air speed, (c) referred (or corrected) low pressure fan speed (N1/ $\sqrt{\Theta I_2}$) as a function of EPR and air speed, and (d) referred (or corrected) net thrust as a function of low pressure fan speed and air speed
- Aircraft lift and drag coefficients as a function of takeoff flap settings and landing gear position.

Input data which are supplied or selected by the program user include the following:

- Airport temperature and pressure altitude
- Aircraft weight
- Engine thrust parameters
- Flap setting
- Climb and descent equivalent air speeds (including the climb speed above the one-engine out takeoff safety speed, V2)
- Flap retraction speed schedules and times
- Turn radius (when turning operations are performed).

MODEL OUTPUTS

Each aircraft flight profile consists of a number of flight path sections. The number of sections comprising each profile will depend upon the type of flight operation and the procedure used. The output from the flight procedures model provides aircraft and engine performance data for each section of the profile. Specific types of data presented depend upon the aircraft type considered. When turning operations are performed, the

2-12

S. 1

لأرب وسأروق وإردار والمعاد فالأراجات

flight track turning angle is computed from a specified turn radius and is presented as part of the output. A complete listing of the model output data is presented below:

- Total time from brake release (or to touchdown), minutes -TOT.MIN.
- Horizontal distance from brake release (or touchdown), feet - DIS.(FT)
- Height above the airport, feet HAA(FT)
- True air speed, KTAS VT(KTAS)
- Equivalent air speed, KEAS VE(KEAS)
- Rate-of-climb (or descent), feet/min. ROC(FPM)
- Flight track turn angle, degrees TURN ANG
- Average climb angle, degrees CLM ANGL
- Average angle-of-attack, degrees ALPHA
- Average aircraft body angle, degrees BOD ANGL
- Flap setting (at section endpoints), degrees FLAP1, FLAP2
- Thrust, (at section endpoints), lbs. FN1(LBS), FN2(LBS)
- Referred net thrust (at section endpoints) lbs FNDEL1, FNDEL2
- Engine-pressure-ratio (at section endpoints) EPR1, EPR2
- Referred low pressure fan speed (at section endpoints), RPM - FAN SPD1, FAN SPD2

AIRCRAFT PERFORMANCE ALGORITHMS

The flight procedures model uses the following three aircraft performance equations to construct flight paths and performance schedules:

and a second a second second

مقصر والمحاصر والمصارفة معافر المادي أوارون

$$F_n \cos \alpha_B = D + \frac{W}{g} \dot{V} + W \sin \gamma$$
 (2-1)

$$(L + F_n \sin \alpha_B) \cos \phi = W \cos \gamma$$
 (2-2)

$$(L + F_n \sin \alpha_B) \sin \phi = \frac{W}{g} \dot{\theta}_c V \cos \gamma$$
 (2-3)

where:

 $F_n = Total net thrust$

W = Aircraft weight

g = Acceleration of gravity

D = Aircraft drag

L = Aircraft lift

V = Aircraft velocity along the flight path axis

V = Aircraft acceleration

 α_{R} = Body angle-of-attack, degrees

 γ = Climb angle, degrees

 ϕ = Aircraft banking angle, degrees

 θ_c = Aircraft turning angle in the horizontal plane, degrees

 $\dot{\theta}_{r}$ = Aircraft turning rate, radians per second

Equation 2-1 describes the forces acting on the aircraft in a direction along the flight path axis. Equations 2-2 and 2-3 describe the forces acting normal to the flight path axis. Equations 2-1, 2-2, and 2-3 are general in that they are applicable to straight flight paths ($\phi = 0$) and to curved flight paths ($\phi \neq 0$) which result from turning operations. In deriving equations 2-1, and 2-2, two assumptions were made: 1) the net thrust can be considered to act along the aircraft body axis, i.e., the angle between the thrust vector and aircraft body axis is approximately equal to 0, and 2) the centrifugal force component, resulting from a change in flight path angle, is small compared to the other forces normal to the flight path axis. Both of these assumptions have been shown to be reasonable. Figures 2-1 and 2-2 identify the various forces acting on the aircraft during a turning operation. Figure 2-1 shows the forces acting normal to the flight path axis and Figure 2-2 shows the forces acting in the horizontal plane. From Figure 2-1, it can be seen that

.

an equation for the banking angle ϕ can be expressed as:

$$\phi = \arctan\left(\frac{\dot{\theta}_{c}V}{g}\right)$$
(2-4)

where $\dot{\theta}_{c}$ is the aircraft's turning rate in radians per sec. The turning rate can be expressed as⁵:

$$\dot{\theta}_{c} = \frac{V \cos \gamma}{R}$$
 (2-5)

where R.is the aircraft's turning radius as measured in the horizontal plane. Using equation 2-5, the banking angle can also be expressed as:

$$\phi = \arctan\left(\frac{V^2 \cos \gamma}{Rg}\right)$$
 (2-6)

The aircraft lift and drag forces are defined by the following equations:

$$D = \frac{1}{2} \rho V_{T}^{2} S_{W}C_{D} = \frac{1}{2} \rho_{O}V_{e}^{2} S_{W}C_{D}$$
(2-7)

$$L = \frac{1}{2} \rho V_T^2 S_w C_L = \frac{1}{2} \rho_0 V_e^2 S_w C_L$$
(2-8)

where:

ρ = ambient air density

 $\rho_0 = air density at sea level$

 V_{a} = equivalent air speed of the aircraft

 V_T = true air speed of the aircraft

 $S_w = aircraft wing area$

 C_n = aircraft drag coefficient

C, = aircraft lift coefficient

ويتبعدون والمراجع والمتعادية والمتحد والمتحد والمتحد والمحاج

For a given flap setting and landing gear position, the aircraft drag coefficient (C_D) is calculated as function of the lift coefficient (C_L) . For a given flap setting and landing gear position, the aircraft lift coefficient (C_L) is calculated as a function of the body angle-of-attack (α_B) . A description of the C_L and C_D computational algorithms is presented in Reference 1.

ATMOSPHERIC PARAMETERS

The atmosphere used with the flight procedures model was constructed using algorithms described in References 6 and 7. Sea-level pressure altitude and $77^{\circ}F$ were selected as the reference atmospheric conditions. The following sections discuss the components of the model atmosphere.

Geopotential Pressure Altitude

The geopotential pressure altitude is computed from:

$$HPALT = (ALT \cdot Re) / (ALT + Re)$$
(2-9)

where:

HPALT = geopotential pressure altitude, feet

ALT = pressure altitude, feet

Re = equivalent earth radius (20,844,820 feet)

Standard Temperature

The standard ambient temperature is computed from:

$$TSTA = T_{LR} + LR + HPALT$$
 (2-10)

where:

TSTA = standard ambient temperature, ^{O}K

 $T_0 \approx \text{sea-level standard temperature, 298.15}^{\circ} K$

LR = first-layer standard lapse rate,
$$1.9812 \times 10^{-3}$$
 K/foot

Conversions from degrees Fahrenheit to degrees Kelvin were com-

puted from:

$$TEMPK = (TEMPF + 459.67)/1.8$$
(2-11)

where:

חרמד ממתי בווני

TEMPK = temperature in ${}^{O}K$ TEMPF = temperature in ${}^{O}F$

Ç.,)

Non-Standard Temperature

The non-standard ambient temperature is computed from:

where:

THPK = non-standard ambient temperature, ^{O}K

Altitude Pressure Ratio

The altitude pressure ratio (δ) is computed from:

$$\delta = (TSTA/T_{o})^{5.2588}$$
 (2-13)

Altitude Temperature Ratio

The altitude temperature ratio (θ) is computed from:

$$\theta = (TAPTK/T_0) \qquad (2-14)$$

where:

如此是我们的是我们的是我们的是我们的是你们的是你们就是你们就能能帮助你的。"

 $\gamma_{\rm A} = p_{\rm e} = 0$

TAPTK = airport temperature, ^{O}K

Altitude Density Ratio

The altitude density ratio (σ) is computed from:

 $\sigma = \delta/\theta \qquad (2-15)$

where:

 $\delta =$ altitude pressure ratio

 θ = altitude temperature ratio

Speed of Sound

The speed of sound is computed from:

 $CT = 65.783 \sqrt{THPK}$ (2-16)

and a second second and a second s

where:

CT = speed of sound, feet/sec
III. PROGRAM EXECUTION

MODEL DESIGN

The basic structure of the modified flight procedures model is shown on Figure 3-1. The flight procedures computer model is totally interactive, i.e., it is designed to interact with low-speed remote terminals during its execution. During program execution, the model user is prompted for specific data required to construct the aircraft flight paths and performance schedules.

HOW TO RUN THE FLIGHT PROCEDURES MODEL

After the TSO logan procedure has been completed*, the computer system responds by displaying "READY". The user is now connected with the TSO interactive computer system and is ready to execute the flight procedures model. If the user is signed on under the user-ID EPATFP, the model is executed by typing:

EXEC FLYPRO(GOMAIN)

If the user is signed on under another user-ID, the model is executed by typing:

EXEC 'CN.EPATFP.MUSN.FLYPRO.CLIST(GOMAIN)'

*An example TSO logon procedure is presented in Appendix B.

3-1

- - - - - -

. .

....

3-6

. . .

end

المحلول في الحد المحيط حصرت هذا المحمد الما المراد ما مدون و المار الم حدود

After the execution command is typed, the system will respond with the following:

FOR ALL INPUTS: SEPARATOR IS COMMA, BLANK(S), OR TAB TWO COMMAS ENTER NULL ITEM IN LIST, SLASH ENDS LIST LITERALS ARE LEFT-JUSTIFIED. ABBREVIATIONS ARE NOT ALLOWED. NUMERICS MAY CONTAIN SIGN AND/OR DECIMAL POINT

THIS PROGRAM IS DESIGNED TO HANDLE THE FOLLOWING AIRCRAFT TYPES: 1 - 2E-LBPR-NB 4 - 2E-HBPR-WB 2 - 3E-LBPR-NB 5 - 3E-HBPR-WB 3 - 4E-LBPR-NB 6 - 4E-HBPR-WB SELECT PLANE TYPE 1-6 2

Next, the user selects the aircraft type be considered by the model and the airport temperature (^{O}F) and pressure altitude (feet). The user is then asked if the program execution is to "continue as is" using the - selected aircraft type and airport parameters. If the user responds with "YES", the type of operational procedure, either a takeoff or an approach (and landing), is then selected. If a response of "NO" is given, the user is given the opportunity to select new airport parameters (with the same aircraft type), or new airport parameters and new aircraft type. An example of the interaction between the user and the computer system during the selection of the aircraft type, airport parameters, and type of operational procedure is shown below:

```
SELECT PLANE TYPE 1-6
2
6
 ENTER AIRPORT TEMP(DEG-F), ALT(FT)
?
59,0
                                     4E HBPR WB
 PLANE TYPE 6 IS
 AIRPORT TEMP(DEG.F) = 59.0 ALTITUDE(FT) =
                                                  0.0
 DO YOU WANT TO CONTINUE AS IS ? YES OR NO
YES
 PROFILE TYPES ARE TAKEOFF OR APPROACH
DO YOU WANT TAKEOFF PROFILE
                                 ? YES OR NO
YES
```

÷

(_____

3-7

Takeoff Procedures

BERT PARK AVAILAN.

ž

If the takeoff procedure is selected, the user is asked to select or provide the following information:

- Aircraft weight
- Initial takeoff flap setting
- Climb speed above the one-engine out takeoff safety speed (V2).

Based on these data, the aircraft's flight path and performance schedule for the ground-roll section and the initial climb sections (to 400 feet HAA) are determined.* From point of lift-off to 400 feet HAA, the following operational procedures are used for all aircraft considered in the model: 1) constant thrust setting (all-engine takeoff thrust), 2) constant flaps, and 3) at 400 feet HAA, landing gear retraction completed and final first segment climb speed achieved. An example of the interaction between the user and the computer system in constructing, the first three sections of a takeoff flight procedure is shown below:

ENTER TAK	CEOFF FLAP SETTING INDEX		•	
TWEAL I	INDEX FLAP SEITTING, DEG			
L	10.000			
2	20.000			
2 11				
L				
ENTER AIRC	RAFT WT(KLBS) :: WITHIN RANGE OF	500.0	TO	800.0
2				
700				
INPUT I	NDEX CLIMB SPEED ABOVE V2		•	
1	10,000			
2	20.000			
2	30,000	1	-	
, ,	301000			
INDEX OF	1 GIVES CLIMB SPEED ABOVE V2 =	10.000000		

*Three sections are used to define the operation of the aircraft from brake release to 400 feet HAA. These sections are: 1) brake release to point of lift-off, 2) lift-off to 35 feet HAA, and 3) 35 feet HAA to 400 feet HAA.

ę., j

second a substance to a second second

3-8

Starting at 400 feet HAA, eight takeoff operational procedures, or options, may be used to construct the complete flight path and performance schedule for an aircraft operating in accordance with a specified takeoff procedure. The complete flight path and performance schedule is comprised of a number of individual sections in which the aircraft performs various operational activities. The eight takeoff options considered in the flight procedures model represent the operational activities associated with the procedures currently used or capable of being used in routine departures.

Figure 3-2 presents a generalized flight path and flight track section and defines the section input and output parameters. Table 3-1 presents a brief description of each of the eight takeoff options and identifies specific input and output parameters associated with each option.

The specific form of the inputs required to exercise each option is defined for the user during the program execution. However, to facilitate a better understanding of the use of each option, a brief description of the key input parameters is presented below:

f

1. 140

<u>Thrust Setting Index</u>. Engine thrust may be specified in terms of: 1) net pounds of thrust per engine, 2) all-engine takeoff thrust setting (TAKEOFF THR), 3) maximum or normal climb thrust setting (MAX CLIMB TR), 4) referred (or corrected) low pressure fan speed (REF FAN SPD) or, 5) engine-pressure-ratio (ENG PR RATIO). An example of the interaction between the user and the computer system in selecting the thrust setting is shown below:

EN.	FER BEGIN	NING	THRUST	SETTING	INDEX
FORM	4	IND	X		
LBS/	ENGINE]	L		
TAK	OFF THR	- 2	2		
MAX	CLIMB TR	3	3		
REF	FAN SPD	4	ł		
ENG	PR RATIO	5	i		
?					
2					

3-9

and the second second

OPTION	DESCRIPTION OF OPERATION	INPUT PARAMETERS	OUTPUT PARAMETERS
1	Climb at constant equivalent speed, constant flap setting, and constant thrust setting; landing gear retracted	H ₂ , TP, DC, R ^{±/}	$\vec{\mathbf{y}}_{2}$, \mathbf{D}_{1} , $\vec{\mathbf{v}}_{2}$, \mathbf{t}_{2} , $\vec{\mathbf{D}}_{B}$, $\vec{\mathbf{a}}_{B}$, \mathbf{O}_{C} , $\vec{\mathbf{v}}_{1}$ (KTAS), \mathbf{V}_{2} (KTAS)
2	Climb at constant equivalent speed, constant flap setting, and constant thrust setting; landing gear retracted	H ₂ , DC, V _Z , R ¹ /	$\overline{\gamma}$, D, t, $\overline{0}_{B}$, $\overline{\alpha}_{B}$, $0_{C}^{1/2}$, V_{1} (KTAS), V_{2} (KTAS), TP_{1} , TP_{2}
3	Climb at constant equivalent speed, constant flap setting, and constant thrust setting; landing gear retracted	$H_2, DC, \overline{Y}, R^{\frac{1}{2}}$	D, \overline{V}_2 , t, \overline{O}_B , \overline{O}_B , $O_C^{1/2}$, V_1 (KTAS), V_2 (KTAS), TP_1 , TP_2
4	Climb at constant equivalent speed, constant flap setting, and constant thrust setting; landing gear retracted	H ₂ , D, TP, DC, R ¹ /	\overline{v} , \overline{v}_{z} , t, \overline{o}_{B} , \overline{a}_{B} , $\overline{o}_{C}^{1/}$, v_{1} (KTAS); v_{2} (KTAS)
5	a) Acceleration with constant flap setting, and constant thrust setting; landing gear retracted	TP, OC, $V_2(KEAS)$, R, \overline{V}_2 (optional), H_2^2	$\overline{\gamma}$, 0, t, $\overline{\sigma}_{B}$, $\overline{\sigma}_{B}$, $\overline{\sigma}_{C}^{1/}$, γ_{1} (KTAS), γ_{2} (KTAS), $\parallel_{2}^{2/}$
-	 b) Climb at constant equivalent speed, constant flap setting, and changing thrust setting; landing gear retracted 	TP ₂ , DC, V ₂ (KEAS), R, N ₂	\overline{Y} , ϑ , ι , $\overline{\vartheta}_{B}$, $\overline{\vartheta}_{B}$, $\overline{\vartheta}_{C}$, ϑ_{1} (KTAS), ϑ_{2} (KTAS), \overline{y}_{2}
_	 Acceleration with constant flap setting and changing thrust setting; landing gear retracted 	TP ₂ , DC, V ₂ (KEAS), R , \overline{V}_{Z} (optional), $H_{Z}^{2/2}$	\overline{Y} , D, t, \overline{O}_{B} , $\overline{\alpha}_{B}$, $\overline{\Theta}_{C}^{1}$, Y_{1} (KTAS), Y_{2} (KTAS), $H_{2}^{2/2}$

TABLE 3-1									
TAKEOFF	FLIGHT	PROCEDURE	OPTIONS						

finit a

Comment of the section of the sectio

Notes:

 $\mathcal{U}_{\mathsf{Denotes}}$ input and output parameters for curved flight tracks

 \overline{V}_{0} = Average pitch attitude of the aircraft, degrees \overline{w}_{0} = Aircraft body angle-of-attack, degrees $\overline{Z}/1f \overline{V}_{2}$ is an input, H₂ is an output parameter; if \overline{V}_{2} is not an input, H₂ is an input parameter

 $\frac{2}{16}$ is an input, V₂ (KEAS) is an output parameter; if \overline{V}_2 is not an input, V₂(KEAS) is an input parameter

TABLE 3-1 (Cont.) TAKEOFF FLIGHT PROCEDURE OPTIONS

NOTTO	DESCRIPTION OF OPERATION	INPUT PARAMETERS	OUTPUT PARAMETERS
6 Acc con ret	Acceleration with constant flap setting, and constant thrust setting: landing gear	112. TP. DC. R.1/	\overline{Y} , D, t, \overline{O}_{B} , \overline{a}_{B} , \overline{O}_{C} , V_{1} (KTAS),
	retracted	\overline{V}_{Z} (optional), $V_{2}(KEAS)^{\frac{1}{2}}$	V ₂ (KTAS), V ₂ (KEAS) ^{<u>3</u>/}
7 Climb at constant thrust setting, a landing gear retr	Climb at constant equivalent speed, constant thrust setting, and changing flap setting;	DC1, DC2, TP, t ⁴ / _{FR} , R ¹ /	$\overline{\gamma}$, D, H ₂ , $\overline{\nu}_{Z}$, $\overline{\delta}_{B}$, $\overline{\alpha}_{B}$, $\overline{\Theta}_{C}$,
	landing gear retracted		V ₁ (KTAS). V ₂ (KTAS)
8 Ac cl rd	Acceleration with constant thrust setting and '	. DC ₁ , DC ₂ , TP, t ⁴ / _{FR} ,	$\overline{\gamma}$, D, H ₂ , $\overline{\Theta}_{B}$, $\overline{\alpha}_{B}$, $\frac{1}{\Theta_{C}}$, v_{1} (KTAS),
	retracted	v _z , r ¹ /	V ₂ (KTAS)

 \bigcirc

Notes:

 $\frac{4}{t_{\rm FR}}$ flap retraction time in seconds

3777 >>>>、 ·····

ł

All of the above thrust setting options are not available for all aircraft types considered in the model.

<u>Aircraft Velocity</u>. The aircraft input velocities in the direction of flight are specified in knots, equivalent air speed (KEAS). The rateof-climb is specified in feet per minute (FPM).

<u>Flap Setting Index and Retraction Time</u>. The user selects an index number to specify a desired flap setting. A minus sign is used to indicate that the landing gear is extended. The flap retraction time is specified in seconds. An example of the interaction between the user and the computer system in selecting the flap setting is shown below:

ENTER FLAP SETTING MINUS SIGN INDICATES LANDING GEAR DOWN INPUT INDEX FLAP SETTING, DEG

0.0
14.000
25.000
-25.000
-40.000
-50.000

An example of the use of each of these options is presented in the following sections.

Option Number 1

123456

?

ENTER OPTION NO. 1 THRU 8 2 1 DO YOU WANT CURVED PATH(NO=STR)? YES OR NO NO ::: WITHIN RANGE OF 400.0 TO 1.000E+06 ENTER END HEIGHT (FT) 2 1000 ENTER BEGINNING THRUST SETTING INDEX FORM INDEX LBS/ENGINE 1 TAKEOFF THR 2 MAX CLIMB TR 3 REF FAN SPD 4 5 ENG PR RATIO

تبجله طفئت وساوسين ووبا الحداريا وربا والمطنابة

? 2

J. Charles

ロビクナ フノコン

A & Z & A 11

1

Option Number 2

ENTER OPTION NO. 1 THRU 8 ? 2 DO YOU WANT CURVED PATH (NO-STR) ? YES OR NO NO ENTER END HEIGHT (FT) :: WITHIN RANGE OF 1000. TO 1.000E+04 ? 1500 ENTER CLIMB SPEED (FT/MIN WITHIN RANGE OF .0 TO 1.000E+04 2 1000

Option Number 3

?

ENTER OPTION NO. 1 THRU 8 ? 3 DO YOU WANT CURVED PATH(NO-STR)? YES OR NO NO ENTER END HEIGHT (FT) :: WITHIN RANGE OF 1500. то 1.000E+04 2 2000 ENTER CLIMB ANGLE (DEG) : WITHIN RANGE OF •0 TO 90.00 2 3 Option Number 4

ENTER OPTION NO. 1 THRU 8 ? 4 DO YOU WANT CURVED PATH (NO=STR)? YES OR NO NO ENTER SECTION LENGTH (FT) WITHIN RANGE OF .0 'n 1.000E+05 ? 10000 ENTER END HEIGHT (FT) ::: WITHIN RANGE OF 1500. TO 1.000E+06 2 2000 ENTER BEGINNING THRUST SETTING INDEX FORM INDEX LES/ENGINE 1 TAKEOFF THR 2 MAX CLIMB TR 3 REF FAN SPD 4 ENG PR RATIO 5

¢. 0

a na sana na manana ang kananana na sana na sana na kanana na sana na sana na sana na sana na sana na sana na s

Option Number Sa (Rate-of-Climb Not Specified)

FSA

Ĩ

? 2

ENTER OPTION NO. 1 THRU 8 ? 5 DO YOU WANT CURVED PATH (NO=STR)? YES OR NO NO DO YOU WANT TO SPECIFY VZ ? YES OR NO NO ENTER ESTIMATE OF END HT, WITHIN RANGE OF 400.0 TO 1.040E+04 ? . 3549 DO YOU WANT CONSTANT EQ. VEL. ? YES OR NO NO ENTER END EQ. VEL IN KNOT WITHIN RANGE OF 177.9 то 250.0 ₽ 207.93 THRUST SETTING CAN BE CONSTANT DO YOU WANT IT TO BE CONSTANT ? YES OR NO YES ENTER BEGINNING THRUST SETTING INDEX INDEX FORM LBS/ENGINE 1 TAKEOFF THR 2 MAX CLIMB TR 3 REF FAN SPD 4 ENG PR RATIO 5

المراجع والمتلك المتحد المتحدين المتحدين والمحاج والمحاج والمحاج والمحاج والمحاج والمحاج والمحاج والمحاج والمح

and a second second

Option Number 5a (Rate-of-Climb Specified)

ENTER OPTION NO. 1 THRU 8 2 5 DO YOU WANT CURVED PATH (NO=STR)? YES OR NO NO DO YOU WANT TO SPECIFY VZ ? YES OR NO YES 3000. .0 . ENTER CLIMB SPEED FT/MIN WITHIN RANGE OF то 2 1000 1.289E+04 2893. то ENTER ESTIMATE OF END HT. WITHIN RANGE OF ? 3000 DO YOU WANT CONSTANT EQ. VEL. ? YES OR NO NO ENTER END EQ. VEL IN KNOT WITHIN RANGE OF 177.9 250.0 TO 2 207.93 THRUST SETTING CAN BE CONSTANT DO YOU WANT IT TO BE CONSTANT ? YES OR NO YES ENTER BEGINNING THRUST SETTING INDEX FORM INDEX LBS/ENGINE 1 TAKEOFF THR 2 MAX CLIMB TR 3 4 REF FAN SPD ENG PR RATIO 5 ?

.....

3-16

¢., 1

Option Number 5b

(^{-Ele}

...

ģ

_F≓

1771

ENTER OPTION NO. 1 THRU 8 ? 5 DO YOU WANT CURVED PATH (NO=STR)? YES OR NO NO DO YOU WANT TO SPECIFY VZ ? YES OR NO NO ENTER ESTIMATE OF END HT. WITHIN RANGE OF 3549. TO 1.355E+04 ? 4000 DO YOU WANT CONSTANT EQ. VEL. ? YES OR NO YES ENTER BEGINNING THRUST SETTING INDEX FORM INDEX LBS/ENGINE 1 2 3 TAKEOFF THR MAX CLIMB TR REF FAN SPD 4 ENG PR RATIO 5 ? 2 ENTER END THRUST SETTING INDEX FORM INDEX LBS/ENGINE 1 TAKEOFF THR 2 MAX CLIMB TR 3 REF FAN SPD 4 ENG PR RATIO 5 ? 3 **...** . . .

3-17

and a state of the second second

Option Number 5c (Rate-of-Climb Not Specified)

ENTER OPTION NO. 1 THRU 8 2 5 DO YOU WANT CURVED PATH (NO=STR)? YES OR NO NO DO YOU WANT TO SPECIFY VZ ? YES OR NO NO 1.4500+04 ENTER ESTIMATE OF END HT. WITHIN RANGE OF 4500. то 2 4600 DO YOU WANT CONSTANT EQ. VEL. ? YES OR NO NO 250.0 222.7 то ENTER END EQ. VEL IN KNOT WITHIN RANCE OF 2 227.93 THRUST SETTING CAN BE CONSTANT DO YOU WANT IT TO BE CONSTANT ? YES OR NO NO ENTER BEGINNING THRUST SETTING INDEX FORM INDEX LBS/ENGINE 1 TAKEOFF THR 2 MAX CLIMB TR З REF FAN SPD 4 ENG PR RATIO 5 ? 2 ENTER END THRUST SETTING INDEX FORM INDEX LBS/ENGINE 1 TAKEOFF THR 2 MAX CLIMB TR З REF FAN SPD 4 ENG PR RATIO 5 ? 3 ,

3-18

والمراجع وال

Option Number 5c (Rate-of-Climb Specified) ENTER OPTION NO. 1 THRU 8 ? 5 DO YOU WANT CURVED PATH (NO=STR)? YES OR NO NO DO YOU WANT TO SPECIFY VZ ? YES OR NO YES 3000. ENTER CLIMB SPEED FT/MIN WITHIN RANGE OF •0 то 2 1000 ENTER ESTIMATE OF END HT. WITHIN RANGE OF 400.0 то 1.040E+04 ? 1000 DO YOU WANT CONSTANT EQ. VEL. ? YES OR NO NO ENTER END EQ. VEL IN KNOT WITHIN RANGE OF 177.9 то 250.0 ? 207.93 THRUST SETTING CAN BE CONSTANT DO YOU WANT IT TO BE CONSTANT ? YES OR NO NO ENTER BEGINNING THRUST SETTING INDEX INDEX FORM LBS/ENGINE 1 TAKEOFF THR 2 MAX CLIMB TR 3 REF FAN SPD 4 5 ENG PR RATIO 2 2 ENTER END THRUST SETTING INDEX INDEX FORM LBS/ENGINE 1 TAKEOFF THR 2 3 MAX CLIMB TR REF FAN SPD 4 ENG PR RATIO 5 ? з

3-19

1

ų,

「おおいちになる」ででいる

1

コーフー シンフィ

.....

i

Ū

Option Number 6 (Rate-of-Climb Not Specified) ENTER OPTION NO. 1 THRU 8 2 6 DO YOU WANT CURVED PATH (NO=STR) ? YES OR NO NO DO YOU WANT TO SPECIFY VZ ? YES OR NO NO TO 1.241E+04 ENTER END HEIGHT (FT) ::: WITHIN RANGE OF 2407. 3000 177.9 то 250.0 ENTER ESTIMATE END EQ. VEL WITHIN RANGE OF ? 215 ENTER BEGINNING THRUST SETTING INDEX INDEX FORM LBS/ENGINE 1 TAKEOFF THR 2 3 MAX CLIMB TR REF FAN SPD 4 5 ENG PR RATIO ? 2 Option Number 6 (Rate-of-Climb Specified) ENTER OPTION NO. 1 THRU 8 2 6 DO YOU WANT CURVED PATH (NO=STR)? YES OR NO NO DO YOU WANT TO SPECIFY VZ ? YES OR NO YES ENTER CLIMB SPEED FT/MIN WITHIN RANGE OF •0 $\mathbf{O}\mathbf{\Gamma}$ 3000. 2 1000 ENTER END HEIGHT (FT) ::: WITHIN RANGE OF 4141. TO 1.414E+04 2 -4500 ENTER ESTIMATE END EQ. VEL WITHIN RANGE OF 207.9 'TO .250.0 2 215 ENTER BEGINNING THRUST SETTING INDEX INDEX FORM LES/ENGINE 1 TAKEOFF THR 2 6.) MAX CLIMB TR 3 REF FAN SPD 4 ENG PR RATIO 5 2 2

2 JU

ال الهاي المكتر العالي الي فالهما كالت كاف

DECT CORV AVIAII ANI

ī

Option Number 7 ENTER OPTION NO. 1 THRU 8 ?7 DO YOU WANT CURVED PATH (NO=STR)? YES OR NO NO MINUS SIGN INDICATES LANDING GEAR DOWN ENTER FLAP SETTING 1 FLAP SETTING, DEG INPUT INDEX 0.0 1 1.000 2 5.000 3 10.000 4 5 20.000 -20.000 6 7 -25.000 --30.000 8 ? 4 ENTER FLAP SETTING 2 FLAP SETTING, DEG INPUT INDEX 0.0 1 2 1.000 3 5,000 10.000 4 5 20.000 -20.000 6 7 -25.000 8 -30,000 ? 3 2407. 1.241E+04 ENTER EST. OF END HT (FT) ::: WITHIN RANGE OF TO 2 4200 .0 TO 100.0 ENTER FLAP RETRACT. TIME WITHIN RANGE OF ? 4.7 • ENTER BEGINNING THRUST SETTING INDEX INDEX FORM 1 2 LBS/ENGINE TAKEOFF THR MAX CLIMB TR REF FAN SPD 3 4 ENG PR RATIO 5 ?

and a second management of the second sec

92

Option Number 8

ENTER OPTION NO. 1 THRU 8 ? 8 DO YOU WANT CURVED PATH (NO=STR)? YES OR NO NO MINUS SIGN INUICATES LANDING GEAR DOWN ENTER FLAP SETTING 1 INPUT INDEX FLAP SETTING, DEG 1 0.0 2 1.000 3 5.000 4 10.000 5 20.000 6 -20.000 7 -25.000 8 -30.000 ? 3 ENTER FLAP SETTING 2 INPUT INDEX FLAP SEITING, DEG 1 0.0 1.000 2 3 5.000 4 10.000 5 20.000 -20.000 6 7 -25.000 8 -30.000 ? 2 ENTER CLIMB SPEED (FT/MIN WITHIN RANGE OF 3000.0 .0 TO 2 1000 ENTER FLAP RETRACT. TIME WITHIN RANGE OF TO 100.0 .0 ? 30.6 ENTER ESTIMATE END EQ.VEL. WITHIN RANGE OF 177.9 TO 250.0 ? 245 ENTER BEGINNING THRUST SETTING INDEX FORM INDEX LBS/ENGINE 1 TAKEOFF THR 2 MAX CLIMB TR 3 REF FAN SPD 4 ENG PR RATIO 6.4 5 ?: 2

3-22

a and a second second

Option Number 1 (With Curved Flight Path) ENTER OPTION NO. 1 THRU 8 ? 1 DO YOU WANT CURVED PATH (NO=STR) ? YES OR NO YES 400.0 то 1.000E+06 ENTER END HEIGHT (FT) ::: WITHIN RANGE OF 2 1000 ENTER BEGINNING THRUST SETTING INDEX FORM INDEX LBS/ENGINE 1 TAKEOFF THR 2 3 MAX CLIMB TR REF FAN SPD 4 ENG PR RATIO 5 2 2 5.000E+04 то ENTER RADIUS OF CURVE (FT WITHIN RANGE OF 500.0 2 20000

Approach and Landing Procedures

4

If the approach (and landing) procedure is selected, the user is asked to select or provide the following information:

- Aircraft weight
- Initial approach height above the airport
- Initial approach air speed
- Initial approach flap setting

بالارتجاز ويأور الوثي والتوثير والردائية تستعقبوه فالارجوا فسنتم فتعشبه

After the above data have been entered, the user is asked to select one of the four available approach and landing procedure options. These procedure options can be used to model the operational activities associated with typical approach and landing operational procedures. An example of the interaction between the user and the computer system during the initialization of the approach and landing parameters is shown below:

PROFILE TYPES ARE TAKEOFF OR APPROACH DO YOU WANT TAKEOFF PROFILE ? YES OR NO NO START OF APPROACH ENTER AIRCRAFT WT (KLBS) : : WITHIN RANGE OF 450.0 TO 650.0 ? 500 EMTER INITIAL HEIGHT (FT) WITHIN RANGE OF .0 то 2:000E+04 ? 5000 ENTER INIT EQ. VEL. (KN) :: WITHIN RANGE OF TO 250.0 .0 ? 214 ENTER FLAP SETTING MINUS SIGN INDICATES LANDING GEAR DOWN INPUT INDEX FLAP SETTING, DEG 1 0.0 2 1.000 3 5.000 4 10.000 5 20.000 6 -20.000 7 -25.000 8 -30.000 ?1

Table 3-2 presents a brief description of each of the four approach and landing options (number 9 thru 12) and identifies specific input and output parameters associated with each option. An example of the use of each of these options is presented in the following sections.

(.....

3-24

. .

10	_
	_

		14	BLE	3-?		
PPROACH	AND	LANDING	FEI	GHT	PROCLAURE	0011

, frink

الهياة فرافي فرقت بقوا متجر فالمحاج

APPROACH AND LANDING FLIGHT PROCEDURE OPTIONS									
UPTION	DESCRIPTION OF OPERATION	INPUT PARAMITERS	· OUTPUT PARAMETERS						
9	Nescend at constant equivalent speed, constant flap setting and constant thrust setting; landing gear retracted or extended	$H_1^{\underline{L}'}$, H_2 , TP, OC(LG), $R^{\underline{L}'}$	$\overline{\mathbf{v}}$, D, \mathbf{v}_2 , t, $\overline{\mathbf{v}}_B$, $\overline{\mathbf{u}}_B$, $\overline{\mathbf{o}}_C^{-\prime}$, \mathbf{v}_1 (KTAS), \mathbf{v}_2 (KTAS)						
10	Descend at constant equivalent speed or deceleration with constant flap setting and changing thrust setting; landing gear re- tracted or extended	$u_1^{1/}, u_2, DC(LG)^{2/}, v_2,$ $v_1(KEAS)^{1/}, v_2(KEAS)^{3/}, R^{4/}$	$TP_{1}, TP_{2}, \overline{Y}, t, \overline{U}_{B}, \overline{u}_{B}, u_{C}^{4/}, v_{1}(KTAS), v_{2}(KTAS)$						
11	Descend at constant equivalent speed or deceleration with constant flap setting and changing thrust setting; landing gear re- tracted or extended	$H_{1}^{1/}, H_{2}, DC(LG) \stackrel{2/}{,} \overline{\gamma},$ $v_{1}(KEAS) \stackrel{1/}{,} v_{2}(KEAS) \stackrel{3/}{,} R^{4/}$	$ \begin{array}{c} TP_1, TP_2, \overline{V}_2, \mathfrak{t}, \overline{\mathfrak{O}}_{H}, \overline{\mathfrak{n}}_{B}, \overline{\mathfrak{O}}_{C}^{4/}, \\ V_1(KTAS), V_2(KTAS) \end{array} $						
12	(a) Level flight at constant equivalent speed, constant flap setting and constant thrust setting; landing gear retracted or ex- tended	H ^{1.5} /, DC(1.6) ^{2/} , D,V ₁ (KEAS) ^{1/} , R ^{4/}	$TP_{1}, TP_{2}, \overline{\gamma}, \overline{\nu}_{Z}, t, \overline{o}_{\beta}, \overline{\alpha}_{B}, o_{C}^{4/}, v_{1} (KTAS), v_{2} (KTAS)$						
	(b) Level flight deceleration with constant flap setting and changing thrust setting; landing gear retracted or extended	$H^{\frac{1.5}{2}}$, $DC(LG)^{\frac{2}{2}}$, D. $V_1(KEAS)^{\frac{1}{2}}$, $V_2(KEAS)$, $R^{\frac{4}{2}}$	$TP_{1}, TP_{2}, \overline{Y}, V_{Z}, t, \overline{O}_{B}, \overline{O}_{E}, C_{C}^{L'}, V_{1}, (KTAS), V_{2} (KTAS)$						

Notes:

 $\frac{1}{2}$ Denotes input parameter if this option is the initial section of the flight profile. $\frac{2}{2}$ Denotes flap setting and landing gear position. $\frac{3}{2}$ Denotes input parameter for deceleration operation. $\frac{4}{2}$ Denotes input and output parameters for curved flight tracks. $\frac{5}{11} = \frac{11}{2}$

Option Number 9

.

ENTER OPTION NO. · 9 THRU 12 ? ġ DO YOU WANT CURVED PATH (NO=STR)? YES OR NO NO ENTER END HEIGHT (FT) ::: WITHIN RANGE OF .0 TO 5000. ? 3000 ENTER FLAP SEITING MINUS SIGN INDICATES LANDING GEAR DOWN INPUT INDEX FLAP SEITING, DEG 1 0.0 1.000 2 3 5.000 10.000 4 5 20.000 6 -20.000 -25.000 7 -30,000 8 ? 4 ENTER BEGINNING THRUST SETTING INDEX FORM INDEX LES/ENGINE 1 REF FAN SPD 4 ENG PR RATIO 5 2 5 1,750 1.000 TO ENTER EPR SETTING WITHIN RANGE OF ? • • 1.0 Option Number 10 ENTER OPTION NO. 9 THRU 12 ? 10 DO YOU WANT CURVED PATH (NO=STR)? YES OR NO NO ENTER END HEIGHT (FT) ::: WITHIN RANGE OF 1000. .0 то ? 50 DO YOU WANT CONSTANT EQ. VEL. ::? YES OR NO YES ENTER DESCENT SPEED FT/MIN WITHIN RANGE OF 3000. .0 TO ? (in 720

ź

3-26

المراكز المحمد المراجع المعادي المتعادية والمتحد والمحمد والمحم

á

¢ 1 ÷.

1

ţ-

日日の時間を設置

ģ.

Option Number 12a ENIER OPTION NO. 9 THRU 12 ? 12 DO YOU WANT CURVED PATH (NO=STR)? YES OR NO NO ENTER SECTION DIST (FT) : WITHIN RANGE OF .0 TO 2.000E+04 ? 15000 DO YOU WANT CONSTANT EQ. VEL. :? YES OR NO YES ENTER FLAP SEITING MINUS SIGN INDICATES LANDING GEAR DOWN INPUT INDEX FLAP SETTING, DEG. 1 2 - 0.0 1.000 3 5.000 4 5 6 7 10.000 20.000 -20.000 8 -30.000 ?4 (₃)

3-28

Option Number 12b ENTER OPTION NO. 9 THRU 12 ? 12 DO YOU WANT CURVED PATH (NO-STR)? YES OR NO NO ENTER SECTION DIST (FT) : WITHIN RANGE OF .0 TO 2.000E+04 2 15000 DO YOU WANT CONSTANT EQ. VEL. :? YES OR NO NO ENTER END EQ. VEL. (KN) WITHEN RANGE OF .0 TΟ 173.0 ? 153 ENTER FLAP SETTING MINUS SIGN INDICATES LANDING GEAR DOWN INPUT INDEX FLAP SETTING, DEG 1 0.0 2 1.000 3 5.000 4 10.000 5 20.000 6 7 -20.000 -25.000 8 -30.000 ?7 Option Number 10 (with Curved Flight Path) ENTER OPTION NO. 9 THRU 12 ? 10 DO YOU WANT CURVED PATH (NO=STR) ? YES OR NO YES ENTER END HEIGHT (FT). ::: WITHIN RANGE OF .0 TO 1000. ? 50 DO YOU WANT CONSTANT EQ. VEL. ::? YES OR NO YES ENTER DESCENT SPEED FT/MIN WITHIN RANGE OF OT 3000 .0 ? 720 500.0 TO ENIER RADIUS OF CURVE (FT WITHIN RANGE OF 5.000E+04 2 30000.

9.7

28

DECT CORK

.

and a second second

3-29

Example Takeoff_Flight Procedure

Figure 3-3 describes the flight profile and operational activities for the ALPA/NWA minimum thrust reduction takeoff procedure. Using the flight procedures model, the flight path and performance schedule for a 4-engine, HBPR-wide body aircraft type was constructed. The complete output from the flight procedures model is shown on Table 3-3. The operational parameters used in developing the flight path and performance schedule data presented on Table 3-3 are listed below:

- Airport ambient temperature 59⁰F
- Airport pressure altitude mean sea level
- Aircraft weight 700,000 lbs.
- Initial takeoff flap setting 10 degrees
- Climb speed above the one-engine out takeoff safety
 speed (V2) 10 KEAS

Example Approach and Landing Flight Procedure

Figure 3-4 describes the flight profile and the operational activities associated in a typical approach and landing operational procedure. The flight procedures model was used to construct the flight path and performance schedule for a 4-engine, HBPR-wide body aircraft type. The complete output from the flight procedures model is shown on Table 3-4. The operational parameters used in developing the flight path and performance schedule data presented on Table 3-4 are listed below:

- Aircraft weight = 500,000 lbs.
- Initial approach height above the airport 5000 feet
- Initial approach air speed 173 KEAS
- Maneuver flaps 10 degrees
- Approach and landing flaps 25 degrees

Program Termination

After the flight path and performance schedule data have been determined for each section, the user is asked if the flight profile is

3-30

المريكية الأعرير الرابي وأنبرت والمتعامين ومعتمان

6

1.1.1

3777 2275 2111

i

FIGURE 3-3. TAKEOFF FLIGHT PROFILE AND PROCEDURE DESCRIPTION FOR THE ALPA/NWA MIN. PROCEDURE

2 22

1. S. 1. S. 199

a second seco

. . . .

TABLE 3-3

TAKEOFF FLIGHT PATH AND PERFORMANCE SCHEDULE FOR A 4-ENGINE, HIGH-BY-PASS RATIO WIDE BODY AIRCRAFT TYPE; ALPA/NWA MIN. PROCEDURE

Profile Poin	End A	В	B'	C						C*	D	E	F
SECTION MU	4PER 1	2	3	4	5	6	,	ч	y	. 10	11	12	12
F01_HEN.	3.44	3.91	1.21	1.56	5+0=	2.13	2.44	2.95	1.03	1.20	5+67	3.67	7.18
P(S.(FT)	7432.23	7934.34	11170-65	15368+24	22975.75	10664.16	\$76.55-16	50017.40	51985.21	56292.30	685 M # 81	66725.87	165210.56
HAACETS	មុខ ភ	35.01	4 C0.04	1000.20	1427+55	1505.89	1871_71	2585.71	2704.04	3070.71	4000.00	4007+52	10866.25
VERKTASE	166.65	164 69	175.91	177.42	208.60	213.40	230.12	244.52	253.33	256.49	259.96	261.30	244.56
VEŁKEASD	149.52	171.50	111.93	177.93	207.93	212.47	227.95	244.62	247.93	249.70	249.70	250.00	253.33
AJC(FP*)	C.J	1180.62	1213+45	1724+24	990.0C	999.30	1239.90	1398-26	1500.00	2189-87	1978.85	1062.30	1710.24
TURN AND	0.1	ان ت	3.6	C.3	0.0	0.0	0.C	3+0	C + C	C+3	3*3	0.0	3.5
CLM ANGL	3.2	3.99	3.99	5.53	2.55	2.66	3.00	3.30	3.44	4+97	4.34	2.24	3.55
NLPHA -	3.3	-999.30	4.98	9455	7+79	6.H7	6.41	6.95	5.40	5.44	5.43	5.44	5.43
HUD ANGL	0.03	-999.00	13.98	15.66	L0•!4	9.53	9.62	9-12	9.04	19.31	9.17	7+6#	4.9H
"LAP1	10*40	10.00	16.36	10+00	19.00	10.00	5.00	5.00	3.00	1.00	0.0	7.0	3.0
FLAP2	10.10	10.03	13.00	10+00	10+00	5.00	• 5.0d	1.20	1.00	0+0	0.0	Ū.U	ŭ.Ū
F41(LBS)	-999.10	54037 . 9A	13914.35	31191+80	32593,99	J1352.6A	11215.29	10691+71	29149.93	29005-14	24317.75	23957.37	23953+66
FUZILBSI	14117-98	33914+35	33151.79	12593.98	313+2.(P	31213.29	106*1.74	29180.92	29309.33	28640.36	259*7+17	23753.44	19486.50
F 10 F L L	-749.50	143 57 .98	33965.06	31659+63	33757261	32964.11	32998.43	32779.48	31965+13	21911-16	27131.45	27602.72	27615.35
FABELD	14117-98	23955.86	33659+61	31757.00	32964.10	32908.43	32779.47	11965.11	31911+14	11919-45	27632.72	27405.55	27655+16
F HR 1	-633.73	1+43	1+43	1+42	1.42	1.42	1.42	1.43	1-41	1+41	1.31	1.32	1 - 3 2
2843	1.43	1+45	1.42	1.43	1.42	1.42	1.+3	1.+1	1.41	1+41	1+32	1+32	1+33
F45 SP01		3291+53	3291++1	년 순위 값 + 비위	1565*80	3565*80	1292.49	3292.89	3292.89	3292-99	3156.27	3179.76	3180-23
FAN SPS2	3291.53	32 91 - 21	3365 69	292 . 19	3242.09	\$292.49	273.49	3292.89	3292.89	3292.89	3111.76	5143.23	3221.40

 \bigcirc

NOTE:

Values of -999.00 indicate no data available for output parameter.

Õ

DEPT AAAV MAAN

1

٠

()

AIRPORT ELEVATION

3-33

A. A. A. A.

an ann an an Arrange ann an Arrange an Arrang

Ę

1.1.1.1

ł

ł.

-1

TABLE 3-4

APPROACH AND LANDING FLIGHT PATH AND PERFORMANCE SCHEDULE FOR A 4-ENGINE, HIGH-BY-PASS RATIO WIDE BODY AIRCRAFT TYPE; TYPICAL PROCEDURE

Profile End Points	В	C	D	E	F	G
SECTION NO	HEER 1	2	ť	4		
TOT-HIN.	G . U	2.25	5.13	4	F	6
DIS.(FT)	₹• Ú	4 1949 .1 7	66767.10	9.00 000 DOC	6.63	7.95
HAA(FT)	5100.00	Bin Calo	5 1 6 1 2	1.02.00	117791.31	128914+37
VT(KTAS)	182.75	177.52	177 60	ារជាដ≞់)() ។ការ	13:0.0.	50.00
VE(KEAS)	173.00	173.00	178 5.	307+46	136.61	134.74
ROC(EPH)	D. C	-890.01	110000	153.00	137.00	137.05
TURN APP	3.0	2.4	17 M L	(1 ≜ <u>Ú</u>	-778.14	-719.24
CEM ANGL	0.0	2.8	5 a J	F • 2	B • C	fi•0
ALPHA	6.76	2. 6 C	1.0	€ • Ĥ	3.07	3.00
BOD ANGL	6.76	6.04 6.04	· • / •	5.13	5.442	7.52
FLAP1	10.00	10.57		5+13	5.65	4+53
FLAP2	10.10	11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1.)•60	-25+60	÷25±rr	- 25.00
FN1(LBS)	1 90 55 61	40.11.00	1000	-25.e00	-25+00	-25.00
FN2(LBS)	10:195.61	コルコレーシュー	110000-61	1/095+61	8598+31	8236+43
FRDEL1	12058.21		11032+61	14195.89	9967.20	8399.14
ENDEL2	12458.21	4814.93	11 203 13	11223-13	55°8•61	9532.32
EPR1	1.09	1.1.1	11223+13	35764.6P	9257.25	8413.84
EPR 2	1,119	1.30	1 = 54 75	1.018	1 + GF	1 • C E
FAN SPO1	2340.47	1768	1.00	1+14	1.00	1.05
FAR SPO2	2340.47	1721 13	-2-2-15	2253.73	2072.FP	1950.00
1	**********	1101111	-215	2505.59	2 15 원 +1 원	1936.77

<u>NOTE:</u> Minus sign for flap setting indicate that landing gear is extended.

 \bigcirc

C)

コックイ シンシン

 $\left(\begin{array}{c} & \\ & \\ & \end{array} \right)$

to be ended. If the user wishes to terminate the flight profile development, a "YES" response should be typed. The computer system will then allow the user to continue program execution by selecting one of the following changes:

- New flight profile using the same airport parameters and aircraft type, or
- New airport parameters with the same aircraft type, or
- New airport parameters and new aircraft type.

If the user wishes to terminate program execution, none of the above changes should be selected. When the computer system responds with "ready", the user can then disconnect from the system by typing "LOGOFF". An example of the interaction between the user and the computer system for program termination is shown below:

p	YOU	WANT	TO	END	PIOF:	ЦE	?	YES	OR	NO	
YĽS											
B	YOU	$WA \propto T$	NEW	PRO	FILE	COLLA	?	YES	OR	ŇÖ	
NO											
∞	YCU	VANT	NEW i	AIRP.	RT, OI	lo pla	NE?	YES	OR	ŝ	
NO											
∞	YOU	LANT	NEW	PLA	NE &	AIRPO	RT?	YES	OR	Ūvi	
NO										•	
ENI)		•								
REAL	Y										
)FF										

Program Limitations

30.5

The aircraft, engine, and airport operational limitations for the flight procedures model are identified on Table 2-2. During program execution, the user will be required to select or provide input data which are within the limits of the operational parameters shown on Table 2-2. Other program limitations which the user should keep in mind include the following:

- The equivalent air speed cannot exceed 250 KEAS
- The user can repeat sections of a flight procedure. However, only the last completed section can be repeated. For takeoff procedures, the first section which can be repeated is section number four.

3-35

 Flap and landing gear extentions performed during approach and landing operations are assumed to occur instantaneously.

Program Execution Errors

معدهم وموجزت والجرو والمحاد

There are two general types of errors which can occur during program execution. The first type of error will result in the rejection of the section under consideration, but the results from previous sections are unaffected. The second type of error will result in the termination of the program execution.* Both types of errors are generally caused by incorrect or improper input data entry. For example, the user may specify input data which are not within the operational limits of the model (see Table 2-2) or are not consistent with the physical capabilities of the aircraft type being considered. If either error type occurs during program execution, the user can retrieve all section results up to the point of termination. These data, along with the results from most of the computational algorithms, are stored on a file during program execution. The file name is CN.EPATFP.MUSN. FLYPRO.TEXT. With the listing of this file, the user can determine the location and source of the error.** It is recommended that the user clear the FLYPRO.TEXT file before each new run. Clearing this file can be done by typing "FREE ALL" after the "READY" response is given by the computer system.

*If the program is terminated, the system will respond with "READY". **A listing of the FLYPRO.TEXT file is obtained using the IBM WYLBUR system. The logon procedures for accessing WYLBUR are discussed in Appendix B.

Ç.,)
REFERENCES

1.	Ronk, L.A., et al, "Aircraft Flight Procedures Program: Data Base Development," ORI Technical Report No. 1799, March 1981.
2.	Connor, T., R. Hinckley, et al, "INM, Integrated Noise Model, Version 2 - User's Guide," Federal Aviation Administration Report FAA-EE-79-09, September 1979.
3.	Beckmann, J. M. and H. Seidman, "NOISEMAP 3.4 Computer Program Operator's Manual," Aerospace Medical Research Laboratory Re- port AMRL-TR-78-109, December 1978.
4.	Sperry, W. C., "Effectiveness of Aircraft Takeoff Procedures for Noise Abatement," Noise Control Engineering, Vol. 12, (No. 3), May-June 1979.
5.	Stewart, E. C. and T. M. Carson, "Optimal Guidance and Control for Investigating Aircraft Noise - Impact Reduction," National Aeronautics and Space Administration Report NASA TP 1237, May 1978.
5.	Shapiro, N., et al, "Commercial Aircraft Noise Definition, L-1011 Tristar-Volume V, Computer.Programmer's Manual," Federal Aviation Administration Report No. FAA-EQ-73-6, V, September 1974.
7.	Bhatia, K., et al, "Boeing Airplane/Noise Performance Computer Programs; Programmer's Manual," Federal Aviation Administration Report No. FAA-EQ-73-7, 7, December 1973.

٢,

同時間で

いたないの にいい アンロン・リアンダンド ひをありる後す たたれ往れたけれ

;v

R-1

. . .

4-10 C . .

,

APPENDIX A

COMPUTATIONAL ALGORITHMS USED BY THE FLIGHT PROCEDURES MODEL

TAKEOFF OPERATIONS

The computational algorithms used to compute the first three sections for takeoff operations are described in Reference 1. Most of the flight path and performance schedule data for these sections are obtained from the internal aircraft and engine data base files stored on the computer system. Starting with section number four, eight takeoff options may be used to construct the complete flight path and performance schedule. A description of the key computational algorithms used with each of these options is presented in the following sections.

Option Number 1

The flight path angle, γ , is computed from:

$$\gamma = \arcsin\left[\frac{(F_n \cos \alpha_B) - D}{W\left(\frac{VT2^2 - VT1^2}{2g\Delta Z} + 1\right)}\right]$$
(A-1)

¢. 1

أرباع فالأفاط المريان يتغور المستحد فأعاده

where:

A-2

 \overline{F}_n = average total net thrust, pounds

VT2 = true air speed at altitude H2, feet/sec

VT1 = true air speed at altitude H1, feet/sec

 ΔZ = change in aircraft altitude (H2-H1), feet

The other variables shown in equation A-1 are defined in Section 2. Equation A-1 was derived from equation 2-1 using the relationship:

$$\dot{V} = \frac{VT2^2 - VT1^2}{2\Delta Z} \sin \gamma \qquad (A-2)$$

Equation A-2 can also be expressed as:

$$\dot{V} = \frac{(VT2 - VT1) VZ}{\sin \gamma}$$
(A-3)

where VZ is the aircraft rate-of-climb.

Option Number 2

The average total net thrust, \overline{F}_n , is computed from:

$$\overline{F}_{n} = \left\{ D + W + \left[\frac{(VT2 - VT1) VZ}{g \Delta Z} + \sin \gamma \right] \right\} \frac{1}{\cos \alpha_{B}}$$
(A-4)

The flight path angle is computed from:

$$\gamma = \arcsin\left(\frac{2 VZ}{VT1 + VT2}\right) \qquad (A-5)$$

The average total net thrust per engine at aircraft altitudes H1 and H2 is expressed as:

$$\overline{F}_{n1} = \frac{2\overline{F}_{n}}{N} \begin{bmatrix} \frac{1}{\delta} - \frac{1}{\delta} \\ \frac{2}{2} & \frac{3}{4} \\ \frac{1}{\delta} - \frac{1}{\delta} \\ \frac{1}{\delta} - \frac{1}{\delta} \end{bmatrix}$$
(A-6)

Alexa Sec.

A-3

and

 $\overline{F}_{n_2} = \frac{2\overline{F}_n}{N} \left[\frac{\frac{1}{\delta_3} - \frac{1}{\delta_1}}{\frac{1}{\delta_2} - \frac{1}{\delta_1}} \right]$ (A-7)

where:

F _{n1}	=	average net thrust per engine at H1, pounds
Fn2	4	average net thrust per engine at H2, pounds
N	a	number of engines operating
δ,	3	altitude pressure ratio at Hl
۰ 2	=	altitude pressure ratio at H2
ຣ	Ħ	altitude pressure ratio at (H1 + H2)/2

Option Number 3

The average total net thrust, \overline{F}_n , is computed from:

$$\overline{F}_{n} = \left[D + W \sin \gamma \left(\frac{VT2^{2} - VT1^{2}}{2g\Delta Z} + 1 \right) \right] \frac{1}{\cos \alpha_{B}}$$
(A-8)

The average total net thrust per engine at aircraft altitudes HI and H2 is computed using equations A-6 and A-7, respectively.

Option Number 4

The flight path angle is computed using equation A-1. The initial guess for the aircraft's final altitude, H2, is an input parameter provided by the model user. An interation procedure is used to compute the value for H2 which satisfies the following equation:

$$H2 = (DS \tan \gamma) + H1$$
 (A-9)

6.00

ومالقيك مرابعا أركب والمتلاف المحاوي المتراوي المتراوي مستنب مستنب المست

where DS is the horizontal distance between flight path section end points.

A-4

Option Number 5

If the rate-of-climb is an input parameter specified by the model user, the flight path angle is computed using equation A-1. The initial guess for the aircraft's final altitude, H2, is an input parameter provided by the model user. An iteration procedure is used to compute the value for H2 which satisfies the following equation:

$$H2 = \frac{VZ(VT2 - VT1)}{g\left[\frac{F_n \cos \alpha_B - D}{W} - \sin \gamma\right]} + H1 \qquad (A-10)$$

If the rate-of-climb is not specified as an input parameter, the user selects a final aircraft altitude, and the flight path angle is also computed using equation A-1.

Option Number 6

If the rate-of-climb is an input parameter specified by the model user, the flight path angle is computed using equation A-1. The initial guess for the aircraft's final equivalent air speed is an input parameter provided by the model user. An iteration procedure is used to compute the value for true air speed, VT2, which satisfies the following equation:

$$VT2 = \frac{q\Delta Z}{VZ} \left[\frac{\overline{F}_{n} \cos \alpha_{B} - D}{W} - \sin \gamma \right] + VT1 \qquad (A-11)$$

5 136 1 S - 5 - 7 - 7

If the rate-of-climb is not specified as an input parameter, the user selects the aircraft's final equivalent air speed, and the flight path angle is also computed using equation A-1.

Option Number 7

1997年2月4日1月1日 日本社会

A DE ACTIVICA

The flight path angle is computed using equation A-1. The initial guess for the aircraft's final altitude, H2, is an input parameter provided by the model user. An iteration procedure is used to compute the value for H2 which satisfies the following equation:

$$H2 = 0.5 \left[t_{FR} (VT2 + VT1) \sin \gamma \right]$$
 (A-12)

where ${\bf t}_{\rm FR}$ is the flap retraction time.

Option Number 8

The flight path angle is computed using equation A-1. The initial guess for the aircraft's final equivalent air speed is an input parameter provided by the model user. An iteration procedure is used to computer the value for true air speed, VT2, which satisfies the following equation:

$$VT2 = \frac{q\Delta Z}{VZ} \left[\frac{F_n \cos \alpha_B - D}{W} - \sin \gamma \right] + VT1 \qquad (A-13)$$

APPROACH AND LANDING PROCEDURES

A description of the key computational algorithms used with the four approach and landing procedure options is presented in the following sections.

Option Number 9

The flight path angle is computed from:

$$\gamma = \arcsin\left[\frac{\left(\overline{F}_{n} \cos \alpha_{B}\right) - D}{W\left(\frac{\left(VT2^{2} - VT1^{2}\right)}{2g\Delta Z} - 1\right)}\right]$$
(A-14)

Equation A-14 was derived from equation 2-1 by replacing sin γ with — sin γ . Option Number 10

The average total net thrust, \overline{F}_n , is computed from:

$$F_{n} = \left\{ D + W + \left[\frac{(VT2 \quad VT1) \quad VZ}{g\Delta Z} - \sin \gamma \right] \right\} \frac{1}{\cos \alpha_{B}}$$
(A-15)

()

en e manar e di se con composito

The average net thrust per engine at aircraft altitudes H1 and H2 is computed from equations A-6 and A-7, respectively.

Option Number 11

The average total net thrust, \overline{F}_n , is computed from:

$$\overline{F}_{n} = \left[D + W \sin \gamma \left(\frac{VT2^{2} - VT1^{2}}{2g\Delta Z} - 1 \right) \right] \frac{1}{\cos \alpha_{B}}$$
(A-16)

The average net thrust per engine at aircraft altitudes H1 and H2 is computed from equations A-6 and A-7, respectively.

Option Number 12

The average total net thrust, \overline{F}_n , is computed from:

$$\overline{F}_{n} = \left[D + \frac{W}{2gDS} \left(VT2^{2} - VT1^{2} \right) \right] \frac{1}{\cos \alpha_{B}} \qquad (A-17)$$

where DS is the horizontal distance between flight path section end points.

and an a prime of the state of the state and the state of the second state of the

LOGON AND LOGOFF PROCEDURES FOR THE EPA'S IBM COMPUTER SYSTEM AT NCC

APPENDIX B

1

111111

ويهدموه فالعربية محادث والمراكبة والمحادية والمراجع والمعالية والمحاد والمحاد والمحاد والمحاد والمحادي والمحاد

Survey and the second second

APPENDIX B

LOGON AND LOGOFF PROCEDURES FOR THE EPA'S IBM COMPUTER SYSTEM AT NCC

LOGON PROCEDURES

ロボウオ シンフィ

-

The following steps describe the LOGON procedures for interactive access to the IBM computer system at NCC:

- 1. Turn the terminal on and set its switches for remote session.
- 2. Dial the appropriate telephone access number and wait for ringing, an answer, and a data tone.
- 3. Couple the terminal to the telephone line:
 - For terminals with acoustic couplers, place the telephone handset firmly in the coupler, orienting it as marked on the coupler.
 - For modems (Bell 103, 113, 212A), depress the DATA button.

()

ان و محمد المراجع و الروان المراجع المراجع و المراجع و المراجع و المراجع و محمد ومحمد و محمد و معرف المراجع و الم المراجع و محمد المراجع و المراجع و المراجع و المراجع و المراجع و محمد و محمد و محمد و محمد و محمد المراجع و الم 4. The following message will appear at your terminal (although it will appear garbled at speeds other than 300 or 1200 bps):

PLEASE TYPE YOUR TERMINAL IDENTIFIER

- 5. Type your terminal identifying character (type the letter A).
- 6. The computer system will then display:

-XXXX-YYY-PLEASE LOG IN: (XXXX is a code for the node to which you are connected, and YYY is the port on that node.)

<u>NOTE</u>: This message sent from the system has no parity. If your terminal is checking for parity, this message may be garbled.

Respond by typing IBMPEA1, followed by a carriage return.

To suppress echoing of input characters, a CONTROL H is typed before entering IBMEPA1.

7. The computer system will prompt for the password associated with IBMPEA1:

PASSWORD:

Respond by typing the correct password, followed by a carriage return. (Passwords are not echoed.)

The password for IBMEPA1 is:

NCC

Once the connection is made to the computer, you will receive:
P### (### is a code for the computer port) and:

IBM IS ON LINE

المتحد المصاد المتحد المتحدين والمراجع والمتحد والمعاد والمعاد والمعاد والمعاد والمعاد والمعاد والمعاد والمعاد

CONNECTING TO TSO

The following steps describe the procedure for connecting with TSO:

1. After receiving the message IBM IS ON LINE, the user must enter:

8-3

TSO (followed by a carriage return)

 After receiving the message "enter LOGON for TSO or Wylbur terminal type", the user must enter:

LOGON

or

LOGON userid/password

to initiate a TSO session.

An example of the TSO connecting procedure is presented below:

1 {please type your terminal identifierA -1011-000-
3 {please log in: IEMEPAL;NCC2
5 IBML IS ON LINE
TSO6
7 enter LOGON
LOGON
9 IKJ56700A ENTER USERID -
EPATFP 10
11 ENTER CURRENT PASSWORD FOR EPATEP-
:XXXXXX
13 READY

Notes for TSO Example Steps

- 1. Computer prompt/response
- 2. User selects terminal identifier
- 3. Computer prompt/response
- User keys in CTRL H immediately followed by IBMEPA1; NCC to select IBM system
- 5. Computer response
- 6. User selects TSO
- 7. Computer prompt
- 8. User keys in LOGON to start TSO session
- 9. Computer prompt

B-4

An example of the second second

- 10. User enters EPA user-ID
- 11. Computer prompt
- 12. User enter a password
- 13. Computer responds with READY

CONNECTING TO WYLBUR

1

يحسده فلعدموا يجر

The following steps describe the procedure for connecting with WYLBUR:

 After receiving the message IBM IS ON LINE, the user must enter:

WYL (followed by a carriage return)

 After receiving the message "enter LOGON for TSO or Wylbur terminal type", the user must enter the appropriate WYLBUR terminal type. A single carriage return will provide, as a default, MODEL 37/38 TELETYPE.

An example of the WYLBUR connecting procedure is presented below:

1 {please type your terminal identifierA -1011-012-- 2 3 {please log in: IEMEPAl; NCC 4 5 IBML IS ON LINE WYL-6 7 enter wylbur terminal type 38 -8 (MODEL 37/38 TELETYPE 9 WYLBUR AT EPA NCC-IBM PORT 66 TUESDAY 12:23:36 P.M. 07/28/81 USERID ? EPATEP 10 { ACCOUNT ? MUSN 11 PASSWORD? XXXXXX SPECIFY GLOBAL FORMAT FOR SAVE COMMANDS 12 REPLY - DEFAULT, EDIT, TSO, CARD, OR PRINT FORMAT?CARD-- 13 "LOGON" NOT FOUND IN "WYLIB" ON USER60 14 COMMAND ?

B-5

Notes for WYLBUR Example Steps

- 1. Computer prompt
- 2. User selects terminal identifier
- 3. Computer prompt/response
- User keys in CTRL H immediately followed by IBMEPA1; NCC to select IBM system
- 5. Computer response
- 6. User selects WYL (WYLBUR)
- 7. Computer response
- 8. User selects WYLBUR terminal type
- 9. Computer response
- 10. Computer prompt
- 11. User keys in EPA user-ID, account, and password
- 12. Computer response/prompt
- 13. User selects save format
- 14. Computer response/prompt

LOGOFF PROCEDURES

1774

After a terminal session is completed under TSO or WYLBUR, the user initiates logoff procedures by typing "LOGOFF". If the user is in WYLBUB, the user must also clear the workspace prior to terminating a terminal session. Thereoff, the complete logoff command under WYLBUR is "LOGOFF CLEAR".

After a TSO or WYLBUR LOGOFF, the user may simply hand up or initiate a new TSO or WYLBUR session. To initiate a new TSO or WYLBUR session, type TSO or WYL and proceed accordingly.