N-96-01
 II -A-158

AIRCRAFT FLIGHT PROCEDURES PROGRAM:

MODIFIED COMPUTER PROGRAM MODEL

- USERS MANUAL -

BY:
LARRY A. ROOK
ω

DECEMBER 1931

Prepared Under:
Contract No, E3-:91-6267
Task Order. TFP-4

FOR THE
Office of Noise Abatement and Control U.S. Environmental Protection Agency

Washington, D.C. 27460
AIRCRAFT FLIGHT PROCEDURES PROGRAM:MODIFIED COMPUTER PROGRAM MODEL- USER'S MANUAL -
BY: LARRY A, RINK
DECEMBER 1931
Prepared Under:
Contract Mo, 63-n1-6267
Task Order TFP-4
For the
Office of Noise Abatement and Control U.S. Environmental Protection Agency
Washington, D.C. 204En

This report has been approved for general availability. The contents of this report reflect the views of the contractor, who is responsible for the facts and the accuracy of the data presented herein, and do not necessarily reflect the official views or policy of EPA. This report does not constitute a standard, specification, or regulation.

FOREWARD

The user is assumed to be familiar with the following documents:

- National Computer Center - IBM System, "NCC - IBM WYLBUR Guide"
- U.S. Environmental Protection Agency, "NCC - IBM User's Guide"
- IBM, "OS/VS2 TSO Command Language Reference Manual," GC28-0646-4

This manual describes the procedures for using the modified flight procedures mode1 developed by ORI, Inc. as it extsted on the NCC computer system on July, 1981.

TABLE OF CONTENTS (CONT.)

Page

APPENDIX B: LOGON AND LOGOFF PROCEDURES FOR THE EPA'S IBM COMPUTER SYSTEM AT NCC 8-1

THE PREVIOUS DOCUMENT(S) MAY HAVE BEEN FILMED INCORRECTLY...

B\&B Information \& Image Management 300 Prince George's Boulevard
Upper Marlboro, Maryland 20772
(301) $249-0110$

TABLE OF CONTENTS
Page
FORWARD i
LIST OF FIGURES iv
LIST OF TABLES v
SYMBOLS AND ABBREVIATIONS vi
I. INTRODUCTION 1-1
BACKGROUND 1-1
OBJECTIVES 1-2
II. DESCRIPTION OF THE MODIFIED FLIGHT PROCEDURES MODEL 2-1
TAKEOFF OPERATIONS 2-3
APPROACH AND LANDING OPERATIONS 2-9
MODEL INPUTS 2-11
MODEL OUTPUTS 2-12
AIRCRAFT PERFORMANCE ALGORITHMS 2-13
ATMOSPHEKIC PARAMETERS 2-18
II. PROGRAM EXECUTION 3-1
MODEL DESIGN 3-1
HOW TO RUN THE FLIGHT PROCEDURES MODEL 3-1
REFERENCES R-1
APPENDIX A: COMPUTATIONAL ALGORITHMS USED BY THE FLIGHT PROCEDURES A-1

TABLE OF CONTENTS (CONT.)

Page

APPENDIX B: LOGON AND LOGOFF PROCEDURES FOR THE EPA'S IBM COMPUTER SYSTEM AT NCC B-1
Figure Page
2-1 Forces Acting on the Aircraft During Turning Operations (Normal to the Flight Path Axis) 2-15
2-2 Forces Acting on the Aircraft During Turning Operations (In the Horizontal Plane) 2-16
3-1 Basic Structure of the Modified Flight Procedures Model. 3-2
3-2 Generalized Flight Path and Flight Track Section and Definition of Input and Output Parameters 3-10
3-3 Takeoff flight Profile and Procedure Description for the ALPA/NWA Min. Procedure 3-31
3-4 Flight Profile and Procedure Description for a Typical Approach and Landing Operation $3-33$

LIST OF TABLES

	Table		Page
	2-1	Aircraft/Engine Identification and Selection	2-2
	2-2	Range of Alrport, Aircraft, and Engine Operational Parameters for the Aircrafi Types Considered in the Fiight	
		Procedures Model	2-4.
	3-1	Takeoff Flight Procedure Options	3-11
	3-2	Approach and Landing Flight Procedure Options	3-25
	3-3	Takeoff Flight Path and Performance Schedule for a 4Engine, High-by-Pass Ratio Wide Body Aircraft Type; ALPA/ NWA Min. Procedure	3-32
	3-4	Approach and Landing Flight Path and Performance Schedule for a $4-$ Engine, High-by-Pass Ratio Wide Body Aircraft Type; Typical Procedure .	3-34

Symbol/ Abbreviation	Units	Description
A/C	-	Aircraft
ALT	feet	Airport altitude above sea-level
ARPT	-	Airport
CT	$\mathrm{ft} / \mathrm{sec}$	Speed of sound
C_{0}	-	Aerodynamic drag coefficient
C_{L}	-	Aerodynamic lift coefficient
D	pounds	Aircraft drag
OS	feet	Horizontal distance between fifght path section end points
E	-	Alrcraft engine
EAS	knots, $\mathrm{ft} / \mathrm{sec}$	Equivalent air speed
EPR	-	Engine-Pressure-Ratio
EPA	-	Environmental Protection Agency
0°	deg	Atmospheric temperature in degrees Fahrenheit

Symbol/ Abbreviation	Units	Description
δ_{1}	-	Altitude pressure ratio at H1
δ_{2}	-	Altitude pressure ratio at H2
δ_{3}	-	Altitude pressure ratio at $(\mathrm{H} 1+\mathrm{H} 2) / 2$
$\dot{\theta}$	-	Altitude temperature ratio
${ }^{6}$	deg	Flight track turn angle
$\dot{\theta}_{C}$	radians/sec	Aircraft turning rate
OT_{2}	-	Ratio of the total temperature at the fan stage face to sea level reference temperature of $77^{\circ} \mathrm{F}$
p	$\underline{\mathrm{lbs}-\mathrm{sec}^{2}}$	Ambient air density
	ft^{4}	
ρ_{0}	1bs-sec ${ }^{2}$	Air density at sea level
	ft^{4}	
σ	-	- Altitude density ratio
ϕ	deg	Aircraft banking angle

I. INTRODUCTION

BACKGROUND

Under Task 38 of EPA/ONAC Level-of-Effort Contract No. 68-01-6151, - ORI, Inc. identified and collected performance and operational data and information required to construct flight paths and performance schedules for selected commercial aircraft types powered by turbofan engines. ${ }^{1}$ As part of the task effort, ORI, inc. also evaluated avallable flight procedure computer programs to identify. existing analytical and computer programming work which could be used in developing a modified computer program model to generate aircraft flight path and performance schedule data which are compatible with the input data requirements of the FAA's INM and the USAF's NOISEMAP. ${ }^{2,3}$

In a follow-on task, ORI, Inc. developed modified analytical algorfthms for constructing aircraft flight paths and performance schedules for spectfled operational procedures. These algorithms were derived from fundamental aircraft and engine performance relationships or from operational characteristics appiticable to speciffic aircraft types. Based on these algorithms, a computer model was developed and installed on the EPA's IBM 360/ 370 computer system (NCC). The program was written in FORTRAN IV language and executed interactively under TSO.

In developing the modified flight procedures model, it was found that little of the existing analytical and computer programing work could be

Abstract

utilized, In general, the structure of the existing models and the model s^{\prime} algorithms were not compatible with the performance and operational data and information requirements described in Reference 1 . In addition, the "simpiffed" relationships used in most of the existing models to describe the aircraft's performance and operational characteristics could not provide the specialized capabilities which were identified as requirements of the modified flight procedures model. Furthermore, incompatibility between the EPA's computer system and the systems used to operate many of the existing flight procedures models prevented the use of much of the existing computer programming work in the development of the modified flight pracedures program.

\section*{OBJECTIVES}

The objectives of this program effort were to: 1) develop modifted analytical algorithms for constructing aircraft fiight path and performance schedules for specific operational procedures, 2) develop a computer program model based on these modified analytical al gorithms such that the output is compatible with the input data requirements for FAA's INM and the USAF's NOISEMAP, 3). install the computer program model on the EPA's. IBM 360/370 computer system and demonstrate the operation of model, and 4) prepare a user's manual which provides a detailed description of the use and application of the computer program model. This report describes the work performed in accomplishing these objectives.

II. DESCRIPTION OF THE MODIFIED FLIGHT PROCEDURES MODEL

The modified flight procedures model can be used to construct afrcraft flight paths and performance schedules for takeoff and for approach and landing operations performed in accordance with specified flight procedures. The aircraft types considered in the model are representative of all types of in-service commercial aircarrier aircraft powered by low-by-pass ratio (LBPR) and high-by-pass ratio (HBPR) turbofan engines. The current fleet of "narrow body" aircraft types are powered by LBPR engines and the "wide body" aircraft types are powered by HBPR engines. The following six generic aircraft classes are represented:

- 2-Engine LBPR-Narrow Body (2E-LBPR-NB)
- 3-Engine LBPR-Narrow Body (3E-LBPR-NB)
- 4-Engine LBPR-Narrow Body (4E-LBPR-NB)
- 2-Engine HBPR-Wide Body (2E-HBPR-WB)
- 3-Engine HBPR-Wide Body (3E-HBPR-WB)
- 4-Engine HBPR-Wode Body (4E-HBPR-WB)

Table 2-1 presents a listing of specific aircraft types which are representative of the above generic classes and identifies the aircraft selected to represent each generic class. The engines used to power the selected aircraft are also presented on Table 2-1.

TABLE 2-1
AIRCRAFT/ENGINE IDENTIFICATION AND SEL.ECTION

Generic Aircraft Class	Representative Aircraft Types	Aircraft Selected To Represent Generic Class	Engine Used to Power Selected Atrcraft
2-Engine LBPR-Narrow Body	737/DC-9/BAC-111	737-200 ADV:	JT8D-15
3-Engine LBPR-Narrow Body	727	727-200 ADV.	JT8D-15
4-Engine LBPR-Narrow Body	707/DC-8/720	707-300 B	JT3D-3B/C
2-Engine HBPR-Wide Body	A300/757/767	*	JT9D-20
3-Engine HBPR-Wide Body	DC-10/L-1011	DC-10-10	CF6-6D
4-Engine HBPR-Wide Body	747	747-200	JT90-7

*A pseudo afrcraft has been used to represent the generic class of 2-engine HBPR-wide body aircraft types. Afrcraft performance and operational data and information for the pseudo afrcraft were based on actual data and information for the DC-10-40. The pseudo alrcraft is powered by two (2) JT9D-20 engines.

The range of airport, aircraft, and engine operational parameters for the aircraft types considered in the flight procedures model are shown on Table 2-2. The maximum operating speed allowed by the model for all aircraft types is 1 imited to 250 KEAS. The minimum operating speed is considered to be the aircraft stall speed (Vs). The stall speeds are functions of flap setting and aircraft weight and can be determined from the operational data presented in Reference 1.

A detailed description of the flight procedures model is presented in the following sections.

TAKEOFF OPERATIONS

The takeoff operations which may be modeled include the following:

- Acceleration from brake release to point of lift-off with constant flap and thrust settings; landing gear extended
- Acceleration from point of lift-off to 35 feet height above airport (HAA) with constant flap and thrust settings; landing gear extended
- Acceleration from 35 feet HAA to 400 feet HAA with constant flap and thrust settings; initiate and complete landing gear retraction
- Climb at constant equivalent air speed (EAS), and constant flap and thrust settings; landing gear retracted
- Acceleration with changing flap setting, and with a constant thrust setting; landing gear retracted
- Acceleration with constant flap and thrust settings; landing gear retracted
- Acceleration with constant flap setting and with changing thrust setting; landing gear retracted

TABLE 2-2
RANGE OF AIRPORT, AIRCRAFT, AND ENGINE OPERATIONAL PARAMETERS FOR THE AIRCRAFT TYPES CONSIDERED IN THE FLIGIIT PROCEDURES MODEL

Aircraft Type	AIRPORT PARAMETERS		AIRCRAFT PARAMETERS				
	Pressure Altitude Range, Feet	$\begin{gathered} \text { Temp. } \\ \text { Range, } \\ \text { Degrees, }{ }^{\prime} \\ \hline \end{gathered}$	Flap Position Takeoff	$\text { Degrees, } \frac{\delta_{F}^{\frac{1}{2}}}{\text { Approach }}$	Weight Range, Takeoff	$\frac{\text { Klbs, } W}{\text { Approach }}$	C1 imb Speeds Above V2, Knots, KEAS
2E-LBPR-NB	0 to 6000	30 to 100	1,2,5,10,15,25	$\begin{aligned} & 0,1,2,5,10,15 \\ & 25,250,300,400 \end{aligned}$	70 to 125	70 to 110	15,20,30
3E-LBPR-NB	0 to 6000	30 to 100	5,15,20,25	$\begin{aligned} & 0,2,5,15,20,25, \\ & 250,300,400 \end{aligned}$	110 to 230	100 to 160	10,20,30
4E-LBPR-NB	0 to 6000	30 to 100	14	$\begin{aligned} & 0,14,25,250 \\ & 40 \mathrm{D}, 50 \mathrm{D} \end{aligned}$	190 to 330	160 to 260	10,20,30
2E-HBPR-WB	0 to 6000	40 to 95	5,15,25	$\begin{aligned} & 0,5,15,25,35 \\ & 50,350,50 D \end{aligned}$	198.3 to 360	190 to 330	10,20,30
3E-HBPR-WB	0 to 6000	40 to 95	0,10,20	$\begin{aligned} & 0,5,10,20,35 \\ & 50,350,500 \end{aligned}$	260 to 440	240 to 380	10,20,30
4E-HBPR-WB	0 to 6000	30 to 100	10,20	$\begin{aligned} & 0,1,5,10,20 \\ & 20 \mathrm{D}, 25 \mathrm{D}, 30 \mathrm{D} \end{aligned}$	500 to 800	450 to 650	10,20,30

$1 /$ Landing gear up for approach flaps except for those designated with a 0 .

TABLE 2-2 (Continued)
ENGINE PARAMETERS
Maximum Climb Thrust Engine-Pressure-Ratio (EPR) Setting or Low Pressure Fan Speed Setting (N1)

TABLE 2-2 (Continued)

ENGINE PARAMETERS

Aircraft Type	Referred Net Thrust, ($\left.\mathrm{F}_{\mathrm{n}} / \delta\right)$			Referred Low Pressure Fan Speed, ($\mathrm{N} 1 / \sqrt{\theta \mathrm{T}_{2}}$), RPM	
	EPR Range	$\mathrm{N} 1 / \sqrt{0 \mathrm{~T}_{2}}$ Range, RPM	MACH Number Range	EPR Range	MACH Number Range
2E-LBPR-NB	1.05 to 2.40	-	0.0 to 0.5	-	-
3E-L.BPR-NB	1.00 to 2.40	-	0.0 to 0.5	-	-
4E-LBPR-NB	1.00 to 2.00	-	0.0 to 0.5	-	-
2E-HBPR -WB	1.00 to 1.55	-	0.0 to 0.5	1.00 to 1.65	0.0 to 0.5
3E-HBPR-WB	-	2060 to 3776	0.0 to 0.5	-	-
4E-HBPR-WB	1.00 to 1.75	-	0.1 to 0.5	1.00 to 1.75	0.1 to 0.5

- Climb at constant EAS and constant flap setting, and with changing thrust setting; landing gear retracted
- Climb at constant EAS with changing flap setting, and with constant thrust setting; landing gear retracted.

These nine takeoff operations can be used to model the takeoff flight procedures which are currently used or capable of being used in routine departures.* Each procedure consists of three flight path segments which are identified by their principal operational activities. The segments are defined as:

- Ground-roll and inttiàl=cilimb
- Thrust reduction
- Normal climb.

Each of these three segments may be comprised of several sections in which the aircraft performs various operational activities such. as landing gear retraction, flap retraction, acceleration, and thrust adjustment. The location at which these activities are initiated and the sequence of their occurrence will depend on the specific flight procedure employed.

The operational procedures performed during the ground-roll and initial climb to 400 feet HAA are identical for all aircraft types considered in the model, i.e., constant thrust setting (all-engine takeoff thrust), constant flaps, and landing gear retracted by 400 feet HAA. The only variations to these operational parameters which the model will allow include the initial takeoff flap setting and initial climb speed. Starting with the section beginning at 400 feet HAA, eight takeoff operational procedures, or options, may be used to construct the complete flight path and performance schedule. Each of the eight options may be used to define a strafght or curved flight path section. The following is a brief description of these options.
*A detafled description of these procedures is presented in References 1 and 4 .

Option Number 1

This option defines a flight operation performed at constant equivalent speed, constant flap setting, constant thrust setting, and landing gear retracted. The average flight path angle is computed from the following flight path and performance variables: (1) height above airport, (2) true air speed, (3) average total net thrust, (4) flap setting, and (5) aircraft weight.

Option Number 2

This option defines a flight operation performed at constant equivalent speed, constant flap setting, constant thrust setting, and landing gear retracted. The average total net thrust is computed from the following filight path and performance variables: (1) height above airport, (2) true air speed, (3) rate-of-climb, (4) flap setting, and (5) aircraft weight.

Option Number 3

This option defines a flight operation performed at constant equivalent speed, constant flap setting, constant thrust setting, and landing gear retracted. The average total net thrust is computed from the following fitght path and performance variables: (1) height above airport, (2) true air speed, (3) average flight path angle, (4) flap setting, and (5) alrcraft weight.

Option Number 4

This option defines a flight operation performed at constant equivalent speed, constant flap setting; constant thrust setting, and landing gear retracted. The average flight path angle is computed from the following filght path and performance variables: (1) height above airport, (2) horizontal distance between flight path section end points, (3) true afr speed, (4) average total net thrust, (5) flap setting, and (6) aircraft weight.

Option Number 5

This option can be used to define the following three (3) flight operations: a) acceleration with constant flap setting, and constant thrust setting, b) constant equivalent speed, constant flap setting, and changing

$$
\begin{aligned}
& \text { thrust setting, c) acceleration with constant flap setting and changing } \\
& \text { thrust setting. All three flight operations are performed with the air- } \\
& \text { craft's landing gear retracted. The average flight path angle is computed } \\
& \text { from the following flight path and performance variables: (1) height above } \\
& \text { airport, (2) true air speed, (3) average total net thrust, (4) flap setting, } \\
& \text { (5) aircraft weight, and (6) rate-of-climb (optional for flight operations } \\
& \text { a and c). } \\
& \text { option Number } 6 \\
& \text { This option defines a flight operation performed with aircraft } \\
& \text { acceleration, constant flap setting, constant thrust setting, and landing } \\
& \text { gear retracted. The average flight path angle is computed from the fol- } \\
& \text { lowing flight path and performance variables: (a) height above aiprort, } \\
& \text { (2) true air speed, (3) average total net thrust, (4) flap seeting, (5) } \\
& \text { aircraft weight, and (6) rate-of-climb (optional). } \\
& \text { Option Number } 7 \\
& \text { This option defines a flignt operation performed at constant } \\
& \text { equivalent speed, constant thrust setting, changing flap setting, and } \\
& \text { landing gear retracted. The average flight path angle is computed from } \\
& \text { the following flight path and performance variables: (I) height above } \\
& \text { airport, (2) true air speed, (3) average total net thrust, (4) flap setting, } \\
& \text { (5) flap retraction time, and (6) aircraft weight. }
\end{aligned}
$$

Option Number 8

This option defines a flight operation performed with aircraft acceleration, constant thrust setting, changing flap.setting, and landing gear retracted. The average flight path angle is computed from the following flight path and performance variabies: (1) height above airport, (2) true air speed, (3) average total net thrust, (4) flap setting, (5) flap retraction time, (6) aircraft weight, and (7) rate-of-climb.

APPROACH AND LANDING OPERATIONS
The approach and landing flight operations which may be modeled include the following:

- Descend at constant EAS, and constant flap and thrust settings; landing gear retracted or extended
- Descend at constant EAS or deceleration with constant flap setting and with changing thrust setting; landing gear retracted or extended
- Level flight at constant EAS, and constant flap and thrust settings; landing gear retracted or extended
- Level flight deceleration with constant flap setting and with changing thrust setting; landing gear retracted or extended.

The flight procedures model provides an option for each of the above approach and landing operations. Each of the four options may be used to define a straight or curved fiight path section. Also, flap settings can be changed at section end points to represent "flap management" approach procedures. A description of these options is presented below.

Option Number 9

This option defines a flight operation performed at constant equivalent air speed, constant flap setting, constant thrust setting, and landing gear retracted or extended. The average flight path angle is computed from the following flight path and performance variables: (1) height above airport, (2) true air speed, (3) total net thrust, (4) flap setting, and (5) aircraft weight.

Option Number 10

This option defines a flight operation performed at constant equivalent air speed or aircraft deceleration with constant flap setting, changing thrust, setting, and landing gear retracted or extended. The average total net thrust is computed from the following flight path and performance variables: (1) height above airport, (2) true air speed, (3) rate-of-descent, (4) flap setting, and (5) aircraft weight.

Option Number 11
This option defines a flight operation performed at constant

> equivalent air speed or aircraft deceleration, with constant flap setting, changing thrust setting, and landing gear retracted or extended. The average total net thrust is computed from the following flight path and performance variabies: (1) height above airport, (2) true air speed, (3) flight path angle, (4) flap setting, and (5) aircraft weight.

Option Number 12

This option can be used to define the following two (2) flight operations: a) level flight at constant equivalent air speed, constant flap setting, and constant thrust setting, or b) level flight deceleration with constant flap setting, and changing thrust setting. Both flight operations can be performed with the landing gear retracted or extended. The average total net thrust is computed from the folloiwng flight path and performance variables: (1) height above airport, (2) true air speed, (3) horizontal distance traveled during the flight operation, (4) flap setting, and (5) aircraft weight.
(Tinay MODEL INPUTS
The flight procedures model uses an extensive aircraft and engine performance data base to construct flight path and performances schedules. Most of these data are stored internally on data base files which are read by the main program prior to program execution. The stored input data used by the nodel for both takeoff and approach and landing operational procedures include the following:

- Alrcraft reference wing area
- All-engine distance from brake release to 35 feet HAA and 400 feet HAA over a wide range of aircraft weights, flap settings, airport temperatures, and airport pressure altitudes
- Equivalent air speeds for takeoff over a wide range of afrcraft weights and flap settings*

[^0]- Engine thrust parampters over a full range of takeoff and approach and landing conditions and thrust requirements. These parameters include: (a) all-engine net thrust as a function of air speed, temperature, and altitude (for takeoff operations), (b) referred (or corrected) net thrust (Fn / δ) as a function of engine-pressure-ratio (EPR) and air speed, (c) referred (or corrected) low pressure fan speed ($\mathrm{N} 1 / \sqrt{\theta T_{2}}$) as a function of EPR and air speed, and (d) referred (or corrected) net thrust as a function of low pressure fan speed and air speed
- Aircraft lift and drag coefficients as a function of takeoff flap settings and landing gear position.

Input data which are supplied or selected by the program user include the following:

- Airport temperature and pressure altitude
- Aircraft weight
- Engine thrust parameters
- Flap setting
- Climb and descent equivalent air speeds (including the climb speed above the one-engine out takeoff safety speed, V2)
- Flap retraction speed schedules and times
- Turn radius (when turning operations are performed).

MODEL OUTPUTS
Each aircraft flight proffle consists of a number of flight path sections. The number of sections comprising each profile will depend upon the type of flight operation and the procedure used. The output from the flight procedures model provides aircraft and engine performance data for each section of the profile. Specific types of data presented depend upon the aircraft type considered. When turning operations are performed, the
filight track turning angle is computed from a specified turn radius and is presented as part of the output. A complete listing of the model output data is presented below:

- Total time from brake release (or to touchdown), minutes TOT.MIN.
- Horizontal distance from brake release (or touchdown), feet - DIS.(FT)
- Height above the airport, feet - HAA(FT)
- True air speed, KTAS - VT(KTAS)
- Equivalent air speed, KEAS - VE(KEAS)
- Rate-of-climb (or descent), feet/min. - ROC(FPM)
- Flight track turn angle, degrees - TURN ANG
- Average climb angle, degrees - CLM ANGL
- Average angle-of-attack, degrees - ALPHA
- Average aircraft body angle, degrees - BOD ANGL
- Flap setting (at section endpoints), degrees - FLAP1, FLAP2
- Thrust, (at section endpoints), lbs. - FN1(LBS), FN2(LBS)
- Referred net thrust (at section endpoints) lbs - FNDELI, FNDEL2
- Engine-pressure-ratio (at section endpoints) - EPRI, EPR2
- Referred low pressure fan speed (at section ellupoints), RPM - FAN SPD1, FAN SPD2

AIRCRAFT PERFORMANCE ALGORITHMS
The flight procedures model uses the following three aircraft performance equations to construct flight paths and performance schedules:

$$
\begin{align*}
& F_{n} \cos \alpha_{B}=D+\frac{W}{g} \dot{V}+W \sin \gamma \tag{2-1}\\
& \left(L+F_{n} \sin \alpha_{B}\right) \cos \phi=W \cos \gamma \tag{2-2}\\
& \left(L+F_{n} \sin \alpha_{B}\right) \sin \phi=\frac{W}{g} \dot{\theta}_{C} V \cos \gamma \tag{2-3}
\end{align*}
$$

where:

$$
\begin{aligned}
& F_{n}=\text { Total net thrust } \\
& W=\text { Aircraft weight } \\
& g=A c c e l e r a t i o n ~ o f ~ g r a v i t y ~ \\
& D=A i r c r a f t \text { drag } \\
& L=\text { Aircraft lift } \\
& V=\text { Aircraft velocity along the flight path axis } \\
& \dot{V}=\text { Aircraft acceleration } \\
& \alpha_{B}=\text { Body angle-of-attack, degrees } \\
& Y=\text { Climb angle, degrees } \\
& \phi=A 1 r c r a f t ~ b a n k i n g ~ a n g l e, ~ d e g r e e s ~ \\
& \dot{\theta}_{C}=\text { Aircraft turning angle in the horizontal plane, degrees } \\
& \dot{\theta}_{C}=\text { Aircraft turning rate, radians per second }
\end{aligned}
$$

Equation 2-1 describes the forces acting on the aircraft in a direction along the flight path axis. Equations $2-2$ and $2-3$ describe the forces acting normal to the flight path axis. Equations $2-1,2-2$, and $2-3$ are general in that they are applicable to straight flight paths $(\phi=0)$ and to curved flight paths $(\phi * 0)$ which result from turning operations. In deriving equations $2-1$; and 2-2, two assumptions were made: 1) the net thrust can be considered to act along the aircraft body axis, i.e., the angle between the thrust vector and aircraft body axis is approximately equal to 0 , and 2) the centrifugal force component, resulting from a change in flight path angle, is small compared to the other forces normal to the flight path axis. Both of these assumptions have been shown to be reasonabie. Figures 2-1 and 2-2 identify the various forces acting on the aircraft during a turning operation. Figure 2-1 shows the forces acting normal to the flight path axis and Figure 2-2 shows the forces acting in the horizontal plane. From Figure 2-1, it can be seen that

FIGURE 2-1. FORCES ACTING ON THE AIRCRAFT DURING TURNING OPERATIONS (NORMAL TO THE FLIGHT PATH AXIS)

$$
0
$$

FIGURE 2-2. FORCES ACTING ON THE AIRCRAFT DURING TURNING
. OPERATIONS (IN THE HORIZONTAL PLANE)
4
an equation for the banking angle ϕ can be expressed as:

$$
\begin{equation*}
\phi=\arctan \left(\frac{\dot{\theta}_{c} v}{g}\right) \tag{2-4}
\end{equation*}
$$

where $\dot{\theta}_{C}$ is the aircraft's turning rate in radians per sec. The turning rate can be expressed as ${ }^{5}$:

$$
\begin{equation*}
\dot{\theta}_{c}=\frac{V \cos Y}{R} \tag{2-5}
\end{equation*}
$$

where R.is the aircraft's turning radius as measured in the horizontal plane. Using equation 2-5, the banking angle can also be expressed as:

$$
\begin{equation*}
\phi=\arctan \left(\frac{\nu^{2} \cos \gamma}{R g}\right) \tag{2-6}
\end{equation*}
$$

- The aircraft lift and drag forces are defined by the following equations:

$$
\begin{align*}
& D=\frac{1}{2} \rho V_{T}^{2} S_{W} C_{D}=\frac{1}{2} \rho_{O} V_{e}^{2} S_{W} C_{D} \tag{2-7}\\
& L=\frac{1}{2} \rho V_{T}^{2} S_{W} C_{L}=\frac{1}{2} \rho_{O} V_{e}^{2} S_{W} C_{L} \tag{2-8}
\end{align*}
$$

where:
$\rho=$ ambient air density
$\rho_{0}=$ air density at sea level
$V_{e}=$ equivalent air speed of the aircraft
$V_{T}=$ true air speed of the aircraft
$S_{\text {w }}=$ aircraft wing area
$C_{D}=$ aircraft drag coefficient
$C_{L}=$ aircraft 1ift coefficient
For a given flap setting and landing gear position, the aircraft drag coefficient $\left(C_{D}\right)$ is calculated as function of the lift coefficient $\left(C_{L}\right)$. For a given flap setting and landing gear position, the aircraft lift coefficient $\left(C_{L}\right)$ is calculated as a function of the body angle-ofattack $\left(\alpha_{B}\right)$. A description of the C_{L} and C_{D} computational algorithms is presented in Reference 1.

ATMOSPHERIC PARAMETERS

The atmosphere used with the filight procedures model was constructed using algorithms described in References 6 and 7. Sea-level pressure altitude and $77^{\circ} \mathrm{F}$ were selected as the reference atmospheric conditions. The following sections discuss the components of the model atmosphere.

Geopotential Pressure Altitude
The geopotential pressure altitude is computed from:

$$
\begin{equation*}
\text { HPALT }=\langle A L T \cdot R e) /(A L T+R e\rangle \tag{2-9}
\end{equation*}
$$

where:
HPALT $=$ geopotential pressure altitude, feet
ALT = pressure altitude, feet
$\mathrm{Re}=$ equivalent earth radius ($20,844,820$ feet)

Standard Temperature

The standard ambient temperature is computed from:

$$
\begin{equation*}
\text { TSTA }=T_{0}-L R \cdot H P A L T \tag{2-10}
\end{equation*}
$$

where:
TSTA $=$ standard ambient temperature, ${ }^{O_{K}}$
$T_{0} \approx$ sea-level standard temperature, $298.15^{\circ} \mathrm{K}$
LR = first-iayer standard lapse rate, $1.9812 \times 10^{-3}{ }^{0} \mathrm{~K} /$ foot
Conversions from degrees Fahrenheit to degrees kelvin were computed from:

$$
\begin{equation*}
\text { TEMPK }=(\text { TEMPF }+459.67) / 1.8 \tag{2-11}
\end{equation*}
$$

where:
TEMPK $=$ temperature in $^{0}{ }^{0} \mathrm{~K}$

- TEMPF $=$ temperature in ${ }^{\circ} \mathrm{F}$

Non-Standard Temperature

The non-standard ambient temperature is computed from:

$$
\begin{equation*}
\text { THPK }=\text { TRAT•TSTA } \tag{2-12}
\end{equation*}
$$

where:
THPK $=$ non-standard ambient temperature, ${ }^{0} \mathrm{~K}$
TRAT $=$ ratio between the airport's actual ambient temperature and the sea-level standard temperature

Altitude Pressure Ratio
The altitude pressure ratio (δ) is computed from:

$$
\begin{equation*}
\delta=\left(T S T A / T_{0}\right)^{5.2588} \tag{2-13}
\end{equation*}
$$

Altitude Temperature Ratio

The altitude temperature ratio (θ) is computed from:

$$
\begin{equation*}
\theta=\left(T A P T K / T_{0}\right) \tag{2-14}
\end{equation*}
$$

where:
TAPTK = airport temperature, ${ }^{0} \mathrm{~K}$

Altitude Density Ratio

The altitude density ratio (σ) is computed from: $\sigma=\delta / \theta$

where:

$\delta=$ altitude pressure ratio
$\theta=$ altitude temperature ratio

Speed of Sound

The speed of sound is computed from:
$C T=65.783 \sqrt{T H P K}$
where:
CT = speed of sound, feet/sec

III. PROGRAM EXECUTION

MODEL DESIGN

The basic structure of the modified flight procedures model is shown on Figure 3-1. The flight procedures computer model is totally interactive, i.e., it is designed to interact with low-speed remote terminals during its execution. During program execution, the model user is prompted for specific data required to construct the aircraft flight paths and performance schedules.
how to run the flight procedures model
After the TSO logen procedure has been completed*, the computer system responds by displaying "READY". The user is now connected with the TSO interactive computer system and is ready to execute the filight procedures model. If the user is signed on under the user-ID EPATFP, the model is executed by typing:

EXEC FLYPRO(GOMAIN)

If the user is signed on under another user-10, the model is executed by typing:

EXEC 'CN.EPATFP.MUSN.FLYPRO.CLIST(GOMAIN)'
*An example TSO logon procedure is presented in Appendx B.

FIGURE 3-1. BASIC STRUCTURE OF THE MODIFIED FLIGHT PROCEDURES MODEL

3-2

FIGURE 3-1. (CONT.)

FIGURE 3-1. (CONT.)
3-4

FIGURE 3-1. (CONT.)

After the execution command is typed, the system will respond with the following:

\author{
FOR ALH INPUTS: SEPARATOR IS CCMMA, BLANK(S), OR TAB THO COMMAS ENIER NULU ITEM IN LIIST, SLASH ENDS LTST LITERALS ARE LEFF-UUSTIFIED. ABBREVIATIONS ARE NOT ALILOWED. NUMERICS MAY CONTAIN SIGN AND/OR DECIMAL POINT
 ```
THIS PROGRAM IS DESIGNED TO HANDLE THE FOLLOWING AIRCRAFT TYPES:
 1 - 2E-LBPR-NB 4-2E-HBPR-WB
 2-3E-LBPR-NB 5-3E-HBPR-WB
 3-4E-LBPR-NB 6 - 4E-HBER-WB
 SELECT PLANE TYPE 1-6
 ?

```
}

Next, the user selects the aircraft type be considered by the model and the airport temperature ( \({ }^{\circ} \mathrm{F}\) ) and pressure altitude (feet). The user is then asked if the program execution is to "continue as is" using the . selected aircraft type and airport parameters. If the user responds with "YES", the type of operational procedure, either a takeoff or an approach (and landing), is then selected. If a response of "NO" is given, the user is given the opportunity to select new airport parameters (with the same aircraft type), or new airport parameters and new aircraft type. An example of the interaction between the user and the computer system during the selection of the aircraft type, airport parameters, and type of operational procedure is shown below:
```

SELECT PLANE TYPE 1-6
?
6
ENTER·AIRPORT TEMP(DEG-F),ALT(FT)
?
59,0
PLANE TYPE 6 IS 4E HBPR WB
AIRPORT TEMP(DEG.F) = 59.0 ALTITUDE(FT) = 0.0
DO YOU NANT TO CONIINUE AS IS ? YES OR NO
YES
PROFIIE TYPES ARE TAKEOFF OR APPROACH
DO YOU WANT TAKEOFF PROFILE ? YES OR NO
YES

```

\section*{Takeoff Procedures}

If the takeoff procedure is selected, the user is asked to select or provide the following information:
- Aircraft wefght
- Initial takeoff flap setting
- Climb speed above the one-engine out takeoff safety speed (V2).

Based on these data, the aircraft's flight path and performance scheduie for the ground-roll section and the initial climb sections (to 400 feet HAA) are determined.* From point of lift-off to 400 feet HAA, the following operational procedures are used for all aircraft considered in the model: 1) constant thrust setting (alleengine takeoff thrust), 2) constant flaps, and 3) at 400 feet HAA, landing gear retraction completed and final first segment climb speed achieved. An example of the interaction between the user and the computer system in constructing, the first three sections of a takeoff flight procedure is shown below:

ENTER TAKEOFF FLAP SETTIIVG INDEX INPUT INDEX FLAP SEITING, DEG \(1 \quad 10.000\)
\(2 \quad 20.000\)
\(?\)
1
ENIER AIRCRAFT WT (KLBS ) : : WIMHIN RANGE OF 500.0 To 800.0 ?
700
INPUT INDEX CIIMB SPEEDD ABOVE V2
\begin{tabular}{ll}
1 & 10.000 \\
2 & 20.000 \\
3 & 30.000
\end{tabular}
\(?\)
1
INDEX OF 1 GIVES CLIMB SPEED ABOVE V2 \(=10.000000\)

Starting at 400 feet HAA, eight takeoff operational procedures, or options, may be used to construct the complete flight path and performance schedule for an aircraft operating in accordance with a specified takeoff procedure. The complete flight path and performance schedule is comprised of a number of individual sections in which the aircraft performs various operational activities. The eight takeoff options considered in the flight procedures model represent the operational activities associated with the procedures currently used or capable of being used in routine departures.

Figure 3-2 presents a generalized flight path and flight track section and defines the section input and output parameters. Table 3.1 presents a brief description of each of the eight takeoff options and identifies specific input and output parameters associated with each option.

The specific form of the inputs required to exercise each option is defined for the user during the program execution. However, to facilitate a better understanding of the use of each option, a brief description of the key input parameters is presented below:

Thrust Setting.Index. Engine thrust may be specified initerms of: 1) net pounds of thrust per engine, 2) all-engine takeoff thrust setting (TAKEOFF THR), 3) maximum or normal climb thrust setting (MAX CLIMB TR), 4) referred (or corrected) low pressure fan speed (REF FAN SPD) or, 5) engine-pressure-ratio (ENG PR RATIO). An example of the interaction between the user and the computer system in selecting the thrust setting is shown below:
\begin{tabular}{ll} 
ENTER BEETINING THRUST SEITIIVG INDEX \\
FORM & INDEX \\
LBS/ENGINE & 1 \\
TAKFOFF THR & 2 \\
MAX CLIMB TR & 3 \\
RER FAN SPD & 4 \\
ENG PR KATIO & 5 \\
\(?\) & \\
2 &
\end{tabular}
(1)


> (D).(2) Finght path and fight track section end points
> \(V_{1} V_{2}=\) Alrcraft speed, KEAS, KTAS
> \(\mathrm{H}_{1}, \mathrm{H}_{2}=\) Alrcraft altitude above airport, feat
> \(T P_{1}, T P_{2}=\) Thrust parameter (Fn, Fn/S. EPR, \(\mathrm{NI} / \sqrt{\theta_{2}}\) )
> \(D C_{1}, ~ U C_{2}=\) Orag configuration (flap setting and landing gear position)
> \(Y\) = Average filight path angle, deg.
> DS * Morizontal distance between fight path section end points, feet
> \(W=\) Aircraft weight. ibs
> \(\nabla_{z}=\) Rate-of-cifimb, FPM
> \(t\) : Time to travel between flight path section end points, sec.
> \(\theta_{c}=\) Filght track turn angle, deg.
> R = Filight track turn radius, feet

FIGURE 3-2. GENERALIZED FLIGHT PATH AND FLIGHT TRACK SECTION AND DEFINITION OF INPUT AND OUTPUT PARAMETERS

TAble 3-1

\section*{takeoff flight procedure options}
\begin{tabular}{|c|c|c|c|c|}
\hline \[
\frac{\text { OPTION }}{1}
\] & & \begin{tabular}{l}
DESCRIPTION OF OpERATIOH \\
Climb at constant equivalent speed, constant flap setting, and canstant thrust setting; landing gear retracted
\end{tabular} & \[
\frac{\text { IMPUT PARAMETERS }}{\mathrm{H}_{2}, \mathrm{Tr}, \mathrm{DC}, \mathrm{R}^{\frac{1 / 2}{\prime}}}
\] & \[
\begin{aligned}
& \text { QUTPUT PARMMETERS } \\
& \bar{\gamma}, \bar{o}_{1} \bar{v}_{2}, t, \delta_{B}, \bar{a}_{3}, o_{c} \cdot v_{1} \text { (kTAS). } \\
& v_{2}(\mathrm{kTAS})
\end{aligned}
\] \\
\hline 2 & & Cl lub at constant equivalent speed. constant flap setting, and constant thrust setting; landing gear retracted & \(\mathrm{H}_{2}, \mathrm{oc}, \mathrm{V}_{2}, \mathrm{R}^{\mathrm{j} /}\) & \[
\begin{aligned}
& \bar{\gamma}, D_{1} t, \bar{o}_{B}, \bar{a}_{B}, o_{C}^{\frac{1}{C}}, v_{1}(\mathrm{kTAS}), \\
& v_{2}(k T A S) ., T P_{1}, T P_{2}
\end{aligned}
\] \\
\hline 3 & & Climb at constant equivalent speed, constant flap setting, and constant thrust setting: landing gear retracted & \(\mathrm{H}_{2}, \mathrm{DC}, \mathrm{Y}^{2}, \mathrm{R}^{\frac{1 /}{}}\) & \begin{tabular}{l}
口, \(\bar{v}_{2}, t, \bar{\sigma}_{\mathrm{B}}, \bar{\alpha}_{8}, \mathrm{o}_{\mathrm{c}}^{1 / 1}, \mathrm{v}_{1}\) (KTAS), \\
\(\mathrm{V}_{2}\) (KTAS), \(\mathrm{TP}_{1}, \mathrm{TP}_{2}\)
\end{tabular} \\
\hline 4 & & Cl frab at constant equivalent speed, constant flap setting, and constant thrust setting; landing gear retracted & \(\mathrm{H}_{2}\), D. TP, DC, \(\mathrm{R}^{\text {// }}\) & ₹. \(\bar{v}_{2}, t, \vec{o}_{B}, \bar{a}_{B}, o_{c}^{\frac{1}{c}}, v_{1}(k T A S)\); \(\mathrm{v}_{2}\) (kTas) \\
\hline \multirow[t]{3}{*}{5} & a) & Acceleration with constant flap setting, and constant thrust setting; landing gear retracted & \[
\begin{aligned}
& \text { TP, oc, } V_{2} \text { (KEAS), } R_{1}^{1 /} \\
& \nabla_{2} \text { (nptiona1), } H_{2}^{2 /} \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& \bar{\gamma}, 0, t, \sigma_{B}, \bar{a}_{8}, o_{c}^{\frac{1}{c}}, v_{1} \text { (KTAS). } \\
& v_{2} \text { (kTAS), } \|_{2}^{2 /}
\end{aligned}
\] \\
\hline & b) & Climb at constant equivalent speed, constant flap setting, and changing thrust setting: landing gear retracted & \[
\begin{aligned}
& \mathrm{TP}_{2}, O C, V_{4}(Y E A S), R_{0}^{1 /} \\
& \mathrm{H}_{2}
\end{aligned}
\] & \[
\begin{aligned}
& \bar{\gamma}, 0, t, \bar{\sigma}_{3}, \bar{a}_{3}, o_{C}^{1 /}, v_{1} \text { (kTAS), } \\
& v_{2} \text { (KTAS), }, \bar{v}_{2}
\end{aligned}
\] \\
\hline & c) & Acceleration with constant flap setting and changing thrust setting: landing gear retracted & \[
\begin{aligned}
& T P_{2}, o C, V_{2}(\text { KEAS }), R_{1}^{I \prime} \\
& \bar{v}_{2} \text { (opt (onal) }, H_{2}^{2 /}
\end{aligned}
\] & \[
\begin{aligned}
& \bar{Y}, D_{1} t, \sigma_{1}, \bar{a}_{B}, \theta_{c}^{1 /}, v_{1} \text { (kTAS) } \\
& v_{2} \text { (kTAS), } H_{2}^{2 /}
\end{aligned}
\] \\
\hline
\end{tabular}

\section*{Notes:}

1/Denotes input and output parameters for curved fight tracks
\(\sigma_{0}\) " Average pitch attitude of the alrcraft. degrees
\(\bar{x}_{0}\) = Aircraft body angle-af-attack, degrees
2/if \(\bar{V}_{2}\) is an input, \(\mathrm{H}_{2}\) is an output parameter; if \(\mathrm{V}_{2}\) is not an input, \(\mathrm{H}_{2}\) is an input parameter
\({ }^{1} /\) if \(\bar{v}_{2}\) is an input, \(v_{2}\) (KEAS) is an output parameter; if \(\bar{v}_{2}\) is not an input, \(v_{2}\) (KEAS) is an input parameter

\section*{TABLE 3-1 (Cont.)}

TAKEOFF FLIGHT PROCEDURE OPTIONS
\begin{tabular}{|c|c|c|c|c|}
\hline & \[
\frac{\text { optrion }}{6}
\] & \begin{tabular}{l}
description of operation \\
Acceleration with constant flap setting, and constant thrust setting; landing gear retracted
\end{tabular} & IIIPUT PARAMETERS
\[
\begin{aligned}
& \mathrm{H}_{2}, \text { rp, oc, } \mathrm{R}, 1 / \\
& \bar{v}_{7} \text { (optional), } \mathrm{v}_{2}(\mathrm{KEAS})^{3 /}
\end{aligned}
\] & QUTPUT PARAHETERS
\[
\begin{aligned}
& \bar{y}, D_{1}, \sigma_{B}, \bar{\alpha}_{0}, o_{C}^{\frac{1}{c}}, v_{1} \text { (KTAS), } \\
& \left.v_{2} \text { (XTAS), } v_{2} \text { (KEAS) }\right)^{3}
\end{aligned}
\] \\
\hline \multirow[t]{2}{*}{\[
\stackrel{\sim}{\stackrel{\sim}{n}}
\]} & 7 & Climb at constant equivalent speed, constant thrust setting, and changing flap setting: landing gear retracted & \[
D c_{1}, O C_{2}, T P, t_{f R}^{4 /}, R^{\frac{1}{2}}
\] & \[
\begin{aligned}
& \bar{\gamma}, D, H_{2}, \bar{v}_{2}, \bar{\sigma}_{B}, \bar{\alpha}_{B}, \dot{\theta}_{c}^{\frac{1}{c}} \\
& \stackrel{v_{1}}{ } \text { (KTAS), } v_{2} \text { (KTAS) }
\end{aligned}
\] \\
\hline & 8 & Acceleration with constant thrust setting and changing flap setting: landing gear retracted & \[
\begin{aligned}
& D C_{1}, D c_{2}, \text { TP, } t_{r R}^{4 /} . \\
& \bar{v}_{2}, R^{\frac{1}{2}}
\end{aligned}
\] & \[
\begin{aligned}
& \bar{r}_{1} o_{1} H_{2}, \sigma_{B}, \bar{\alpha}_{8}, 0_{6}^{1 /}, v_{1} \text { (kTAS). } \\
& v_{2}(\text { KTAS })
\end{aligned}
\] \\
\hline
\end{tabular}

\footnotetext{
Notes:
I/ \(t_{F R}\) flap rutraction time in seconds
}

All of the above thrust setting options are not available for all aircraft types considered in the model.

Afrcraft Velocity. The aircraft input velocities in the direction of flight are specified in knots, equivalent air speed (KEAS). The rate-of-climb is specified in feet per minute (FPM).

Flap Setting Index and Retraction Time. The user selects an index number to specify a desired flap setting. A minus sign is used to indicate that the landing gear is extended. The flap retraction time is specified in seconds. An example of the interaction between the user and the computer system in selecting the flap setting is shown below:

ENIER FLAP SEITTING
MINUS SIGN INDICATES IANDING GEAR DOWN
INPLTI INDEX FLAP SEITING, DEG
0.0
14.000
25.000
-25.000
-40.000
-50.000
\(?\)
3
An example of the use of each of these options is presented in the following sections.

Option Number 1
ENTER OPTION NO. 1 THRU 8
?
1
DO YOU WANT CURVED PATH(NOMSTR)? YES OR MO
No
ENTER END HEIGHT (FT) :: : WITHIN RANGE OF 400.0 TO \(1.000 \mathrm{E}+06\)
?
1000
ENTER BEGINNING THRUST SEITIING INDEX
FORM INDEX
LBS/ENGINE \(\frac{1}{2}\)
TAKEOFF THR 2
MAX CLIMB TR 3
REF EAN SPD 4
ENG PR RATIO 5
?
2
```

Option Number 2
ENTER OPTION NO. I THRU }
?
2
DO YOU WANT CURVED PATH(NO=SIR)? YES OR NO
No
ENIER END HEIGHT (FT) :: WITHIN RANGE OF 1000. TO 1.000E+04
?
1500
ENIER CLIMB SPEED (FT/MIN WITHINN RANGE OF .0 TO 1.000E+04
?
1 0 0 0
Option Number 3
ENIER OPTION NO. 1 THRU }
?
3
DO YOU WANT CURVED PATH(NO=STR)? YES OR NO
NO
ENIER END HEIGHT (FT) : : WITHTN RANGE OF 1500. TO 1.000E+O4
?
2000
ENTER CLIMB ANGLE (DEG) : WITHIN RANGE OF .0 TO 90.00
?
3
Option Number 4
ENIER OPTION NO. 1 THRU 8
?
DO YOU WANT CURVED PATH(NO=SIR)? YES OR NO
NO
ENIER SECTION IENGIH (FT) WITHINN RANGE OF .0 TO 1.000E+05
i0000
ENIER END HEIGHT (FNT ::: WITHIN RANGE OF 1500. TO 1.000E+06
?
2000
ENIER BEGINNING THRUST SEITINGG INDEX
FORM INDEX
LBS/ENGINE I
TAKEOFF THR 2
MAX CLIMB IR 3
REF FAN SPD 4
ENG PR RATIO 5
?
2

```
```

 Option Number 5a (Rate-of-Climb Not Specified)
 ENIER OPTION NO. l THRU 8
 ?
5
DO YOU WANT CURVED PATH(NO=STR)? YES OR NO
NO
DO YOU WANT TO SPECIFY VZ ? YES OR NO
NO OTR ESTMMATE OE NND LT, WTTHTN RANGE OF
ENTER ESTIMATE OF END HT, WITHIN RANGE OF 400.0 TO 1.O40E+O4
?
3549
DO YOU WANT CONSTANT EQ. VEL. ? YES OR NO
NO
ENTER END EQ. VEL IN KNOT WITHIN RANGE OF 177.9 TO 250.0
?
207.93
THRUST SETTING CAN BE CONSTANT
DO YOU WANT IT TO BE CONSTANT ? YES OR NO
YES
ENIER BEGINNING THRUST SEITING INDEX
FORM INDEX
LRS/ENGINE THR 1
MAX CLIMB TR }
REF EAN SPD 4
ENG PR RATIO 5
?
2

```

\section*{Option Number 5a (Rate-of-Climb Specified)}

ENTER OPTION NO. 1 THRU 8

\section*{?}

DO YOU WANT CURVED PATH(NO=STR)? YES OR NO NO
DO YOU WANT TO SPECIFY VZ ? YES OR NO


ENIER CLIMB SPEED FT/MIN WITHIN RANGE OF .0. TO 3000 .
?
1000
ENIER ESTIMATE OF END HT. WITHIN RANGE OF 2893. TO \(1.289 \mathrm{E}+04\) ?

3000
DO YOU WANT CONSTANI EQ. VEL. ? YES OR MO NO
ENTER END EQ. VEL IN KNOT WITHIN RANGE OF 177.9 TO 250.0 ?
207.93
thrust setting can be constant
DO YOU WANT IT TO BE CONSTANT ? YES OR NO YES

ENTER BEGINNING THRUST SEITING INDEX FORM INDEX
LBS/ENGINE 1
TAKEOFF THR 2
MAX CLITMB TR 3
REF FAN SPD 4
ENG PR RATIO 5
?
2
Option Number 5b
ENTER OPTION NO. 1 THRU
```

 ?
 5
 DO YOU WANT CURVED PATH(NO=STR)? YES OR NO
 NO
 LO YOU GAANT TO SPECIFY VZ ? YES OR NO
 NO ENTER ES'TIMATE OE END LIT. WITHIN RALME OF 3549. TO 1.355E+O4
 ?
 4 0 0 0
 DO YOU WALTT CONSTANT EQ. VEL. ? YES OR NO
 yES
 EmTER beginning tirust semTInG INDEX
 FORM INDEX
 IBS/ENGINE 1
 INDEX
 TANEOFF THiR 2
 NAX CLIMB TR 3
 REF FAN SPD 4
 EGG PR RATIO 5
 ?
 m
 ENTER END THINUST SEITING INDEX
 FORM INDEX
 LBS/ENGINE 1
 TAKEOFE THR 2
 MAX CLINB TR 3
 REF FAN SPD 4
 ENG PR RATIO 5
 ?
 3

```
    Option Number 5c (Rate-of-Climb Not Specified)
    ENTER OPTION NO. I TITRU &
?
5
    DO YOU WANT CURVED PATH(NO=STR)? YES OR NO
NO
    DO YOU WANT TO SPECIFY VZ ? YES OR NO
    NO ?
    ENTER ESTIMATE OF END HT. WITHIN RANGE OF 4500. TO 1.450C+04
    ?
4 6 0 0
    DO YOU WANT CONSTALNT EQ. VEL. ? YES OR NO
NO
    ENTER END EQ. VEL IN KNOT WITHIN RANGE OF 222.7 TO 250.0
?
227.93
    TMIRUST SEITING CAN BE CONSTAIT
    LO YOU WALNT IT TO BE CCNSTANT ? YES OR NO
NO
    EATIGR beginNING thruST SETTING INDEX
    FORM INDEX
    LBS/EMGINE 1
    TAKEOFF THR 2
    MAX CHIMB TR 3
    REF FALI SPD 4
    ENG PR LATIO 5
?
2
    ENIER END THRUST SETTING INDEX
    FORM INDEX
    LbS/ENGINE 1
    TAKTOFF THR 2
    MAX CLINB TR 3
    REF IAN SPD 4
    ENG PR RATIO. 5
    ?
3
```

```
    Option Number 5c(Rate-of-Climb Specified)
    ENTER OPTION NO. 1 THRU 8
?
5
    DO YOU WANT CURVED PATH(NO=STR)? YES OR NO
NO
    DO YOU WALTT TO SPECIFY VZ ? YES OR NO
YES ENTER CLIMB SPEED FT/MIN WITHIN RANGE OF
    ENTER CLIMB SPEED FT/MIN WITHIN RANGE OF .0 TO 3000.
?
1000
    ENTER ESTIMATE OF END HTT. WITHIN RANGE OF 400.0 TO 1.O40E+04
?
1000
DO YOU LMANT CONSTANT EQ. VEL. ? YES OR NO
NO ENTER END EQ. VEL IN KNOT NITHIN RANGE OF 177.9 TO 250.0
?
THRUST SETMING CAN DE CCNSTRANT
DO YOU VANT IT TO BE CONSTANT ? YES OR NO
NO
enter beginitvo rhrust SETTINg Invex
FORM INDEK
LaS/ENGINE I
TIAKDOFF THR 2
MAX CLIMB TR 3
REF EAN SPD 4
ENG PR RATIO 5
?
2
ENTER END THRUST SEITING INDEX
FORM INDEX
LBS/ENGINE I
TAKEOFF THR 2
HAX CLTMB TR }
REF FANT SPD 4
ERG PR RATIO 5
?
3
```

```
Option Number 6 (Rate-of-Climb Not Specified)
    ENIER OPTION NO. 1 THRU 8
    ?
    DO YOU WANT CURVED PATH (NO=STR)? YES OR NO
    NO
    DO YOU WANT TO SPECTFY VZ ? YES OR NO
NO ? OR O
    ENTER END HEIGHT (FT) z:: WITHIN RANGE OF
    3
    ENTER ESTIMATE END EQ.VEL WITHINN RANGE OF
    ?
    21.5
        ENIER BEGINNING THIRUST SEITINNG INDEX
        FORM INDEX
        IBS/ENGINE 1
        TAKEOFF THR 2
        MAX CLIMB TR 3
        REF EAN SPD 4
        ENG PR RATIO 5
    ?
2
    Option Number 6 (Rate-Of-Climb Specified)
    ENTER OPTION NO. 1 THRUU 8
?
DO YOU WAITT CURVED PATH(NO=STR)? YES OR AO
NO
    DO YOU WANT TO SPECIFY VZ ? YES OR NO
YES 位 C
    ENTER CLIMB SPEED FT/MIN WITHIN RANGE OF .0 TO 3000.
    1000
    ENTER END HEIGFT (FT) :: : WITHIN RANGE OF 4141. TO 1.4I4E+04
    ?
    4500
    ENIER ESTIMATE END EQ.VEL WITHIN RANKE OF 207.9 TO .250.0
        ?
215
    ENIER BEGINIING THRUST SEITING INDEX
    FORN INDEX
    LES/ENGINE
    TMKECFE TIR 2
    MAX CLIMB TR 3
    REF FAN SPD 4
    EMG PR RATIO }
    ?
    2
```

```
Option Number 7
    ENTER OPTTION NO. 1 THRU }
    ?
7
DO YOU WANT CURVED PATH(NO=STR)? YES OR NO
NO
    MINUS SIGN INDICATES LANDING GRAR DOWN
ENTER FLAP SEIMITNG 1
    INPUT INDEX FIAP SEITING, DEG
\begin{tabular}{lr}
1 & 0.0 \\
2 & 1.000 \\
3 & 5.000 \\
4 & 10.000 \\
5 & -20.000 \\
6 & -25.000 \\
7 & -30.000
\end{tabular}
?
ENIER FLAP SEITINNG }
                                    INPUT INDEX FLAP SEITING, DEG
\begin{tabular}{lr}
1 & 0.0 \\
2 & 1.000 \\
3 & 5.000 \\
4 & 10.000 \\
5 & 20.000 \\
6 & -20.000 \\
7 & -30.000 \\
8 &
\end{tabular}
?
ENTER EST.OF END HTP(FT)::: WITHIN RANGE OF 2407. TO 1.241E+04
?
4200 ENLER FLAP REPRACT. TIME WITHIN RANGE OF . O
T0
100.0
?
4 . 7
ENIER REGINNING THRUST SEITING INDEX
FORM INDEX
IBS/ENGINE 
MAX CITMB TR
REF' FAN SPD 4
ENG PR RATIO 5
?
```


Option Number 8

ENIER OPTION NO. I. THRTJ 8

?
DO YOU WANT CURVED PATH (NO=STR)? YES OR NO No
MINUS SIGN INUTCATES LANDING GEAR DOWN ENTER FIAP SETPITNG 1
INPUT INDEX FLAP SEITIING, DEG

14	
1	0.0
2	1.000
3	5.000
4	10.000
5	20.000
6	-20.000
7	-25.000
8	-30.000

3
3
ENIER FLAP SEITIING 2
INPUT INDEX FIAP SEITITNG, DEG

1	0.0
2	1.000
3	5.000
4	10.000
5	20.000
6	-20.000
7	-25.000
8	-30.000

$\stackrel{?}{2}$
2 ENTER CLINB SPEED (FT/MIN WIITHN RANGE OF . 0 TO 3000.0
$?$
1000
ENTER FLAP RETRACT1. TITME WIITIN RANGE OF .0 TO 100.0
?
30.6

ENTER ESTIMATE END ED.VEL. WITHIN RANGE OF 177.9 TO 250.0 ?
245
ENTER BEGITNING THRUST SEITITNG INDEX
FORM INDEX
LBS/ENGINE 1
TAKEOFF TMR 2
MAX CLIMB TR 3
REF FAN SPD 4
ENG PR RATIO 5
2

```
Option Number 1 (With Curved Flight Path)
    ENTER OPTION NO. 1 THRNJ }
?
1
DO YOU WANT CURVED PATH(NO=STR)? YES OR NO
YES
    ENTER END HEIGHTP (FT) ::: WITHIN RANGE OF 400.0 TO 1.000E+06
?
1000
    ENIER BEGINNING THRUST SEITITNG INDEX
FORM INDEX
IBS/ENGINE 1
TAKEOFF THR 2
MAX CLIMB TR 3
REF FAN SPD 4
ENG PR RATIO 5
?
2 ENIER RADIUS OF CURVE (FT WITFINN RANGE OF 500.0 TO 5.000E+04
?
2 0 0 0 0
```


Approach and Landing Procedures

```
If the approach (and landing) procedure is selected, the user is asked to select or provide the following information:
- Aircraft weight
- Initial approach height above the airport
- Initial approach air speed
- Initial approach flap setting
After the above data have been entered, the user is asked to select one of the four available approach and landing procedure options. These procedure options can be used to model the operational activities associated with typical approach and landing operational procedures. An example of the interaction between the user and the computer system during the initialization of the approach and landing parameters is shown below:
```

```
    PFOFILE TYPES ARE TAKEOFF OR APPROACH
    DO YOU WANT TAKEOFF PROFIIE . ? YES OR NO
NO
    START OF APPROACH
    ENIER AIRCRAFT WT (KLBS): :WITHIN RANGE OF 450.0 To 650.0
?
500
ENIER INITIAL HEIGFTT (FT) WITHIN RANGE OF .0 TO 2:000E+04
?
5000
ENTER INIT EQ. VEU. (KN) : : WITHINN RANGE OF .0 TO 250.0
?
214
    ENIER FIAP SEITING
    MINUS SIGN INDICATES LANDING GEAR DOWN
        INPUT INDEX FLAP SEITIING, DEG
        l
                                0.0
                                1.000
                                1.000
                                5.000
                                10.000
        5 rran
        7 -25.000
        8 -30.000
?
1
```

Table 3-2 presents a brief description of each of the four approach and landing options (number 9 thru 12) and identifies specific input and output parameters associated with each option. An example of the use of each of these options is presented in the following sections.

1AB!! 3-?

$\frac{\text { UPI } 10 N}{9}$	DESC[IPITIONOF OF!UATIOH Hescend at constant equivalent ifieed. constant flap setting and constant thrust setting: landing gear retracted or extended		
10	Descend at constant equivalent speed or deceleration with constant flap setting and changing thrust setting: landing gear retracted or extended	$\begin{aligned} & \frac{1 /}{H_{1}^{\prime}} \cdot H_{2} \cdot a C_{1}(1 . G)^{\frac{2 /}{2}} v_{2} \cdot \\ & v_{1}(\mathrm{KEAS})^{\frac{1}{2}} v_{2}(\mathrm{KEAS})^{3 /}, \mathrm{R}^{\frac{4}{4}} \end{aligned}$	$\begin{aligned} & T P_{1}, T P_{2}, \bar{Y}_{1}, \bar{\sigma}_{B}, \vec{त}_{B}, \bar{G}_{C}^{\prime /} \\ & v_{1}(K T A S), V_{2}(K T A S) \end{aligned}$
11	Descend at constant equivalent speed or deceleration with tonstant flap setting and changing thrust setting: landing gear retracted or extended	$\begin{aligned} & \frac{1 /}{H_{1}^{2}}, H_{2}, O C(L G)^{\frac{2}{1}} \bar{Y} \\ & v_{1}(\text { KEAS })^{\frac{1}{1}} \\ & v_{2}(\text { KEAS })^{3 /} \cdot R^{4 /} \end{aligned}$	$\begin{aligned} & T P_{1}, T P_{2}, \bar{v}_{2}, t, \vec{U}_{1}, \bar{a}_{B}, G_{C}^{4 /} \\ & v_{1}(K T A S), v_{2}(K T A S) \end{aligned}$
12	(a)' Level filght at constant equivalent speed, constant flap setting and constant thrust setting; landing gear retracted or extended		$\begin{aligned} & T P_{1}, T P_{2}, \bar{\gamma}, \bar{v}_{2}, c, \bar{o}_{8}, \bar{\alpha}_{B}, O_{C}^{[/ /}, \\ & V_{1}(K T A S), V_{2}(K T A S) \end{aligned}$
	(b) Level flight deceleration with constant flap setting and changing thrust setting; landing gear retracted or extended		$\begin{aligned} & T P_{1}, T P_{2}, \bar{\gamma}, v_{2}, t, \delta_{B},{\overline{a_{E}}}_{E},{ }^{A / C} \text { ' } \\ & v_{1},(K T A S), v_{2} \text { (KTAS) } \end{aligned}$

Notes:
1/Denotes input paraneter if this option is the initial section of the flight profile.
2/Denotes flap setting and landing gear position.
3/Denotes input parameter for deceleration operation.
4/Denotes input and output pirameters for curved flight tracks.
$\underline{5} / \mathrm{H}=\mathrm{H}_{1}=\mathrm{H}_{2}$

```
        Option Number 9
    ENIER OPIION NO.• }9\mathrm{ THRU 12
    ?
    9
    DO YOU WANT CURVED PATH(NO=STR)? YES OR NO
    ENIER END HEIGHT (FT) ::: WITHTIN RANGE OF
    ?
    3000
    ENIER FLAP SEITING
    MINUS SIGN INDICATES LANDING GFAR DOWN
        INPUT INDEX FLAP SEITING, DEG
\begin{tabular}{rr}
1 & 0.0 \\
2 & 1.000 \\
3 & 5.000 \\
4 & 10.000 \\
5 & 20.000 \\
6 & -20.000 \\
7 & -25.000 \\
8 & -30.000
\end{tabular}
?
4
    ENIER BEGINNING THRUST SEITINNG INDEX
    FORM INDEX
    LBS/ENGINE
    REF FAN SPD
    ENG PR RATIO 5
    ?
    5NITER EPR SEITING WITHIN RANGE OF 1.000 TO 1.750
    ?
1.0
        Option Number 10
    ENTER OPITON NO. }9\mathrm{ THRU 12
?
1 0
    DO YOU WANI CURVED PATH(NO=SIR)? YES OR NO
NO
    ENIER END HEIGHT (FT) ::: WITITNV RANGE OF .0 TO 1000.
?
5 0
    DO YOU WANT CONSLANT EQ. VEL. ::? YES OR NO
YES
ENIER DESCENT SPEED FI/MIN WITHIN RANGE OF .0 TO 3000.
?
720
```

```
Option Number 11
    ENTER OPIION NO. }9\mathrm{ THRU 12
    ?
    DO YOU WANT CURVED PATH (NO=STR)? YES OR NO
    NO (D)
    ENTER END HEIGHT (FT) :: : WITHIN RANGE OF .0 TO 3000.
i000
    DO YOU WANT CONSTANT EQ. VEL. ::? YES OR NO
NO
    ENIER END EQ VEL (KN) WITHIN RANGE OF .0 TO 153.0
    i37
    ENIER FLAP SEITIING
    MINUS SICN INDICATES LANDING GEAR DOWN
        INPUT INDEX FTAP SEITING, DEG
\begin{tabular}{lr}
1 & 0.0 \\
2 & 1.000 \\
3 & 50.000 \\
4 & 10.000 \\
5 & -20.000 \\
6 & -25.000 \\
7 & -30.000
\end{tabular}
?
    ENIER DESCENT ANGIE (DEG) : WITHIN RANGE OF .0 TO 90.00
?
3
```

```
    Option Number 12a
    ENIER OPTION NO. }9\mathrm{ THRU 12
?
1 2
DO YOU WANT CUKNED PATH(NO=STR)? YES OR NO
NO
ENIER SECTION DIST (FT) : WITHTN RANGE OF .0 TO 2.000E+04
?
15000
    DO YOU INANT CONSTANT EQ. VEL. :? YES OR NO
yES
    ENIER FLAP SEIIITNG
    MINUS SIGN INDICATES LANDING GEAR DCWN
    INPUT INDEX FLAP SEITITNG, DEG.
\begin{tabular}{lr}
1 & -1 \\
2 & 0.0 \\
3 & 1.000 \\
4 & 10.000 \\
5 & 20.000 \\
6 & -20.000 \\
7 & -25.000 \\
8 & -30.000
\end{tabular}
?
```

```
        Option Number 12b
        ENIER OPTION NO. }9\mathrm{ THRU }1
    ?
    1 2
    DO YOU WANT CURVED PATH (NO=STR)? YES OR NO
    NO
    ENIER SECTION DIST (FT) : WITHINN RANGE OF .0 TO 2.000E+04
    ?
    15000
    DO YOU WANT CONSTANT EQ. VEL. :? YES OR NO
NO
    ENTER END EQ.VEL. (EN) WITHIN RANGE OF .0 TO 173.0
    ?
    153
    ENIER FIAP SEITING
    MINUS SIGN INDICATES LANDING GEAR DOWN
        INPUT INDEX FLAP SEITING, DEG
            1 0.0
            2 1.000
            3 5.000
            4 10.000
            5 20.000
            7 -20.000
            7 -25.000
    ?
7
Option Number 10 (with Curved Flight Path)
    ENHER OPTION NO. }9\mathrm{ THRU 12
    ?
1 0
    DO YOU WANP CURVED PANH(NO=STRI? YES:OR NO
    YES
    ENIER END HEIGHTS FFTL.::: WINHINN RANGE OF .0 TO 1000.
        ?
            50
            DO YOU WNNT CONSTANT EQ. VEL. ::? YES OR NO
            yES
            ENIER DESCENT SPEED FT/MIN WITHIN RANGE OF .0 TO 3000
            ?
            720
            ENIER RADIUS OF CURVE (FTT WITHIN RANGE OF 500.0 TO 5.000E+04
            ?
30000.
```


Example Takeoff Flight Procedure

Figure $3-3$ describes the flight profile and operational activities for the ALPA/NWA mininum thrust reduction takeoff procedure. Using the flight procedures model, the flight path and performance schedule for a 4-engine, HBPR-wide body aircraft type was constructed. The complete output from the flight procedures model is shown on Table 3-3. The operational parameters used in developing the flight path and performance schedule data presented on Table 3-3 are listed below:

- Airport ambient temperature $-59^{\circ} \mathrm{F}$
- Airport pressure altitude - mean sea level
- Aircraft weight - 700,000 lbs.
- Initial takeoff flap setting - 10 degrees
- Climb speed above the one-engine out takeoff safety
- speed (V2) - 10 KEAS

Example Approach and Landing Flight Procedure

Figure 3-4 describes the flight profile and the operational activities associated in a typical approach and landing operational procedure. The flight procedures model was used to construct the flight path and performance schedule for a 4 -engine, HBPR-wide body aircraft type. The complete output from the flight procedures model is shown on Table 3-4. The operational parameters used in developing the flight path and performance schedule data presented on Table 3-4 are listed below:

- Afrcraft weight - 500,000 lbs.
- Initial approach height above the airport - 5000 feet
- Intial approach air speed - 173 KEAS
- Maneuver flaps - 10 degrees
- Approach and landing flaps - 25 degrees

Program Termination

After the flight path and performance schedule data have been determined for each section, the user is asked if the filght profile is

ALPA/NWA MINIMUM THRUST
REDUCTION PROCEDURE
First Segment (roll and Initial cllmb)
OAB Brake release; takeoff roll with takeoff inrus (TOT); rotate and climb to $35 \mathrm{ft}(11 \mathrm{~m})$ height above airport (HAA); and accelerate to V 2 keas
BE' Retract gear, climb to $400 \mathrm{ft}(122 \mathrm{~m}$) HAA; and accelerate to $\mathrm{V} 2+10$ keas
$B^{\prime} \mathrm{C}$ Climb to $1000 \mathrm{ft}(305 \mathrm{~m})$ Fifict with thust $=$ TOT, speed $=\mathrm{V} 2+10$ keas (or greater if required), flaps $=$ trkeoff, and gear $=$ retracted

Second Segment (thrust cutback)
C At $1000 \mathrm{ft}(305 \mathrm{~m})$ HAA, lower nose and accelerate to zero flap speed (VZF), retract flaps per schedule, maintain TOT and a pitch attitude within $1 / 2$ Initial value plus 0 to 3 deg. and a rate of climb not less than 500 fpm (152 metres per minute)
CC' Climb and accelerate to VZF with thrust $=$ TOT, speed $=\mathrm{V} 2+10$ to VZF keas, flaps $=$ retract, and gear $=$ retracted
C' When a speed of VZF and flap retraction are achieved, reduce thrust to maximum elimb thrust (MCT)
C'D Climb to $4000 \mathrm{ft}(1219 \mathrm{~m})$ HAA with thrust $=$ MCT, speed $=$ VZF keas, haps $=$ retracted, and gear $=$ retracted

Third Segment (normal dimb)
D At $4000 \mathrm{ft}(1219 \mathrm{~m})$ HAA, maintain MCT and aceelerate to 250 keas with 500 to 1000 fpm (152 to 305 metres per minute) rate of clirnb
DE Climb and accelerate to 250 keas with thrust $=$ MCT, speed $=V 2 F$ to 250 keas, flaps $=$ retracted, and gear m retracted
E When a speed of 250 heas is achieved, maintain MCT and initiate normal cllmb schedule
EF Climb to $10,000 \mathrm{ft}(3048 \mathrm{~m})$ HAA with thrust $=\mathrm{MCT}$, speed $=250$ keas, llaps $=$ retracted, and gear $=$ setracted
F At $10,000 \mathrm{ft}(3048 \mathrm{~m})$ HAA continue climb at 250 keas or reduce thrust and proceed in horizontal flight at 250 keas

FIGURE 3-3. TAKEOFF FLIGHT PROFILE AND PROCEDURE DESCRIPTION FOR THE ALPA/NWA MIN. PROCEDURE

TABLE 3-3
takeoff flight path and performance schedule for a 4-ENGine HIGH-BY-PASS RATIO WIDE BODY AIRCRAFT TYPE; ALPA/NWA MIN. PROCEDURE

NOTE:
Values of -999.00 indicate no data avallable for output parameter.

airport elevation

TYPICAL APPROACH AND LARDING Fl.IGHT PROCEDURE	
Descend so Glideslope intercept Altitude	
	A日 Level flignt at $5000 \mathrm{ft}(1524 \mathrm{~m})$ HAA; maneuver flaps and speed; thrust as required; gear retracted
	B6. Descend to 3000 ft (914 m) HAA; maneuver flaps and speed; thrust 35 required; gear retracted
Leval	Flignt and Descent
	i At $3000 \mathrm{ft}(914 \mathrm{~m})$ HAA, begin level flight; maneuver flaps and speed; thrust as required; gear retracted
	Co Level illght at 3000 ft (914 m) HAA; maneuver flaps and ipeed; thrust as required; gear retracted
	0 degtn decelaration; set approach flaps: lower gear; thrust ds required
	9E Level fifght at 3000 f : (914 m) HAA; apprsoch flaps and speed; thrust as required; gear extended
	Ef Descend to $1000 \mathrm{ft}(305 \mathrm{~m})$ HAA at a glideslope of 3 degrees; approach flaps and speed; thrust as required; gear exterided
Descend Along Glideslope	
	F At $1000 \mathrm{ft}(305 \mathrm{~m})$ HAA, begin deceleration; set landing flaps; thrust as required; gear extended
	Fo Descend to $30 \mathrm{ft}(15 \mathrm{~m}$) HAH at a glidescope of 3 degrees; lanaing flaps and speed; chrust as required; gear extended

FIGURE 3-4. FLIGHT PROFILE AND PROCEDURE DESCRIPTION FOR A TYPICAL APPROACH AND LANDING OPERATION

TABLE 3-4
APPROACH AND LANDING FLIGIIT PATH AND PERFORMANCE SCHEDULE FOR A 4-ENGINE, HIGH-BY-PASS RATIO WIDE BODY AIRCRAFT TYPE; TYPICAL PROCEDURE

NOTE:

Minus sign for flap setting indicate that landing gear is extended.
to be ended. If the user wishes to terminate the flight profile development, a "YES" response should be typed. The computer system will then allow the user to continue program execution by selecting one of the following changes:

- New flight profile using the same airport parameters and aircraft type, or
- New airport parameters with the same aircraft type, or
- New airport parameters and new aircraft type.

If the user wishes to terminate program execution, none of the above changes should be selected. When the computer system responds with "ready", the user can then disconnect from the system by typing "LOGOFF". An example of the interaction between the user and the computer system for program termination is shown below:

LO YOU WALTT	TO END PROFILE ? YES OR NO
YL'S	
D y you fant	NEW PROFItE CNIL ? YES OR :No
NO	
DO YOU WANT	NEW AIRPRT, OLD PLANE? YES OR Lĩ
NO	
DO YOU WANT	NEW RLANE \& AIRPORT? YES OR İO
NO	
END	
READY	
LOCOFF	

Program Limftations

The aircraft, engine, and airport operational limitations for the flight procedures model are identified on Table 2-2. During program execution, the user will be required to select or provide input data which are within the limits of the operational parameters shown on Table 2-2. Other program limitations which the user should keep in mind include the following:

- The equivalent air speed cannot exceed 250 KEAS
- The user can repeat sections of a flight procedure. However, only the last completed section can be repeated. For takeoff procedures, the first section which can be repeated is section number four.
- Flap and landing gear extentions performed during approach and landing operations are assumed to occur instantaneously.

Program Execution Errors

There are two general types of errors which can occur during program execution. The first type of error will result in the rejection of the section under consideration, but the results from previous sections are unaffected. The second type of error will result in the termination of the program execution.* Both types of errors are generally caused by incorrect or improper input data entry. For example, the user may specify input data which are not within the operational limits of the model (see Table 2-2) or are not consistent with the physical capabilities of the aircraft type being considered. If either error type occurs during program execution, the user can retrieve all section results up to the point of termination. These data, along with the results from most of the computational algorithms, are stored on a flle during program execution. The file name is CN.EPATFP.MUSN. FLYPRO.TEXT. With the listing of this file, the user can determine the location and source of the error.** It is recommended that the user clear the FLYPRO.TEXT flle before each new run. Clearing this file can be done by typing "FREE ALL" after the "READY" response is given by the computer system.

[^1]
REFERENCES

1. Ronk, L.A., et al, "Aircraft Flight Procedures Program: Data Base Development," ORI Technical Report No. 1799, March 1981.
2. Connor, T., R. Hinckley, et al, "INM, Integrated Noise Mode1, Version 2 - User's Guide," Federal Aviation Administration Report FAA-EE-79-09, September 1979.
3. Beckmann, J. M. and H. Seidman, "NOISEMAP 3.4 Computer Program Operator's Manual," Aerospace Medical Research Laboratory Report AMRL-TR-78-109, December 1978.
4. Sperry, W. C., "Effectiveness of Aircraft Takeoff Procedures for Noise Abatement," Noise Control Engineering, Vol. 12, (No. 3), May-June 1979.
5. Stewart, E. C. and T. M. Carson, "Optimal Guidance and Control for Investigating Aircraft Noise - Impact Reduction," National Aeronautics and Space Administration Report NASA TP'1237, May 1978.
6.

Shapiro, N., et al, "Commercial Aircraft Noise Definition., L-1011 Tristar-Volume V, Computer. Programmer's Manual," Federal Aviation Administration Report No. FAA-EQ-73-6; V, September 1974.
7. Bhatia, K., et al, "Boeing Airplane/Noise Performance Computer Programs; Programmer's Manual," Federal Aviation Administration Report No. FAA-EQ-73-7, 7, December 1973.

APPENDIX A

COMPUTATIONAL ALGORITHMS USED

APPENDIX A

COMPUTATIONAL ALGORITHMS USED BY
 THE FLIGHT PROCEDURES MODEL

takeoff operations

The computational algorithms used to compute the first three sections for takeoff operations are described in Reference 1. Most of the flight path and performance schedule data for these sections are obtained from the internal aircraft and engine data base files stored on the computer system. Starting with section number four, eight takeoff options may be used to construct the complete flight path and performance schedule. A description of the key computational algorithms used with each of these options is presented in the following sections.

Option Number 1

The flight path angle, γ, is computed from:

$$
\begin{equation*}
\gamma=\arcsin \left[\frac{\left(F_{n} \cos \alpha_{B}\right)-D}{W\left(\frac{V T 2^{2}-V T 1^{2}}{2 g \Delta Z}+1\right)}\right] \tag{A-1}
\end{equation*}
$$

where:
4

```
F
VT2 = true afr speed at altitude H2, feet/sec
VTI = true air speed at altitude H1, feet/sec
\DeltaZ = change in aircraft altitude (H2-H1), feet
```

The other variables shown in equation A-1 are defined in Section 2. Equation A-1 was derived from equation 2-1 using the relationship:

$$
\begin{equation*}
\dot{V}=\frac{V T 2^{2}-V T 1^{2}}{2 \Delta Z} \sin \gamma \tag{A-2}
\end{equation*}
$$

Equation A-2 can also be expressed as:

$$
\begin{equation*}
\dot{V}=\frac{(V T 2-V T 1) V Z}{\sin \gamma} \tag{A-3}
\end{equation*}
$$

where $V Z$ is the aircraft rate-of-climb.

Option Number 2

$$
\begin{align*}
& \text { The average total net thrust, } \bar{F}_{n} \text {, is computed from: } \\
& \qquad \bar{F}_{n}=\left\{D+W+\left[\frac{(V T 2-V T 1) V Z}{g \Delta Z}+\sin \gamma\right]\right\} \frac{1}{\cos \alpha_{B}} \tag{A-4}
\end{align*}
$$

The filght path angle is computed from:

$$
\begin{equation*}
\gamma=\arcsin \left(\frac{2 V Z}{V T 1+V T Z}\right) \tag{A-5}
\end{equation*}
$$

The average total net thrust per engine at afrcraft altitudes $H 1$ and $H 2$ is expressed as:

$$
F_{n_{1}}=\frac{2 \bar{F}_{n}}{N}\left[\begin{array}{l}
\frac{1}{\delta_{2}}-\frac{1}{\delta_{3}} \tag{A-6}\\
\frac{1}{\delta_{2}}-\frac{1}{\delta_{1}}
\end{array}\right]
$$

and

$$
\bar{F}_{n_{2}}=\frac{2 \bar{F}_{n}}{N}\left[\begin{array}{ll}
\frac{1}{\delta_{3}}-\frac{1}{\delta_{1}} \tag{A-7}\\
\frac{1}{\delta_{2}}-\frac{1}{\delta_{1}}
\end{array}\right]
$$

where:

$$
\begin{aligned}
& \bar{F}_{n_{1}}=\text { average net thrust per engine at } H 1, \text { pounds } \\
& \bar{F}_{n_{2}}=\text { average net thrust per engine at } H 2, \text { pounds } \\
& N=\text { number of engines operating } \\
& \delta_{2}=\text { altitude pressure ratio at } H 1 \\
& \delta_{2}=\text { altitude pressure ratio at } H 2 \\
& \delta_{3}=\text { altitude pressure ratio at }(H 1+H 2) / 2
\end{aligned}
$$

Option Number 3

The average total net thrust, \vec{F}_{n}, is computed from:

$$
\begin{equation*}
\bar{F}_{n}=\left[0+W \sin \varphi\left(\frac{v T Z^{2}-V T 1^{2}}{2 g \Delta Z}+1\right)\right] \frac{1}{\cos } \alpha_{B} \tag{A-8}
\end{equation*}
$$

The average total net thrust per engine at aircraft aititudes HI and H 2 is computed using equations $\mathrm{A}-6$ and $\mathrm{A}-7$, respectively.
Option Number 4
The filght path angle is computed using equation A-1. The initial guess for the aircraft's final aititude, $H 2$, is an input parameter provided by the mocel user. An interation procedure is used to compute the value for 12 which satisfies the foliowing equation:

$$
\begin{equation*}
H 2=(D S \tan \gamma)+H 1 \tag{A-9}
\end{equation*}
$$

where $D S$ is the horizontal distance between flight path section end points.

Option Number 5

If the rate-of-climb is an input parameter spectfied by the model user, the flight path angle is computed using equation $A-1$. The initial guess for the aircraft's final altitude, H2, is an input parameter provided by the model user. An iteration procedure is used to compute the value for H 2 which satisfies the following equation:

$$
\begin{equation*}
H 2=\frac{V Z(V T 2-V T 1)}{g\left[\frac{F_{n} \cos \alpha_{B}-D}{W}-\sin \gamma\right]}+H 1 \tag{A-10}
\end{equation*}
$$

If the rate-of-climb is not specified as an input parameter, the user selects a final aircraft altitude, and the flight path angle is also computed using equation $\mathrm{A}-1$.

Option Number 6

If the rate-of-climb is an input parameter specified by the model user, the flight path angle is computed using equation $A-1$. The initial guess for the aircraft's final equivalent air speed is an input parameter provided by the model user. An fteration procedure is used to compute the value for true air speed, VT2, which satisfies the following equation:

$$
\begin{equation*}
V T 2=\frac{g \Delta Z}{V Z}\left[\frac{\bar{F}_{n} \cos \alpha_{B}-0}{W}-\sin \gamma\right]+V T 1 \tag{A-11}
\end{equation*}
$$

If the rate-of-climb is not specified as an input parameter, the user selects the aircraft's final equivalent air speed, and the flight path angle is also computed using equation A-1.

Option Number 7

The flight path angle is computed using equation $A-1$. The initial guess for the aircraft's final altitude, $H 2$, is an input parameter provided by the model user. An iteration procedure is used to compute the value for H2 which satisfies the following equation:

$$
\begin{equation*}
H 2=0.5\left[t_{F R}(V T 2+V T 1) \sin \gamma\right] \tag{A-12}
\end{equation*}
$$

where $t_{F R}$ is the flap retraction time.

Option Number 8

The flight path angle is computed using equation $A-1$. The initial guess for the aircraft's final equivalent air speed is an input parameter provided by the model user. An iteration procedure is used to computer the value for true air speed, VT2, which satisfies the following equation:

$$
\begin{equation*}
V T 2=\frac{g \Delta Z}{V Z}\left[\frac{\bar{F}_{n} \cos \alpha_{g}-D}{W}-\sin \gamma\right]+V T 1 \tag{A-13}
\end{equation*}
$$

APPROACH AND LANDING PROCEDURES

A description of the key computational algorithms used with the four approach and landing procedure options is presented in the following sections.
Option Number 9
The flight path angle is computed from:

$$
\begin{equation*}
Y=\arcsin \left[\frac{\left(F_{n} \cos \alpha_{B}\right)-0}{W\left(\frac{\left(V T 2^{2}-V T 1^{2}\right.}{2 g \Delta Z}-1\right)}\right] \tag{A-14}
\end{equation*}
$$

Equation $A-1.4$ was derived from equation $2-1$ by replacing $\sin \gamma$ with $-\sin \gamma$. Option Number 10

The average total net thrust, F_{n}, is computed from:

$$
\begin{equation*}
F_{n}=\left\{0+W+\left[\frac{(V T 2, v T 1) V Z}{g \Delta Z}-\sin \gamma\right]\right\} \frac{1}{\cos \alpha_{B}} \tag{A-15}
\end{equation*}
$$

(

The average net thrust per engine at aircraft altitudes H 1 and H 2 is computed from equations $A-6$ and $A-7$, respectively.

Option Number 11
The average total net thrust, \bar{F}_{n}, is computed from:

$$
\begin{equation*}
\bar{F}_{n}=\left[0+W \sin \gamma\left(\frac{V T 2^{2}-V T 1^{2}}{2 g \Delta Z}-1\right)\right] \frac{1}{\cos a_{B}} \tag{A-16}
\end{equation*}
$$

The average net thrust per engine at aircraft altitudes 41 and H2 is computed from equations $A-6$ and $A-7$, respectively.

Option Number 12
The average total net thrust, \bar{F}_{n}, is computed from:

$$
\begin{equation*}
F_{\mathrm{n}}=\left[D+\frac{W}{2 g D S}\left(V T 2^{2}-V T I^{2}\right)\right] \frac{1}{\cos \alpha_{B}} \tag{A-17}
\end{equation*}
$$

where $D S$ is the horizontal distance between flight path section end points.

APPENDIX B

LOGON AND LOGOFF PROCEDURES FOR

THE EPA'S IBM COMPUTER SYSTEM AT NCC

LOGON PROCEDURES

The following steps describe the LOGON procedures for interactive access to the IBM computer system at NCC

1. Turn the terminal on and set its switches for remote session.
2. Dial the appropriate telephone access number and wait for ringing, an answer, and a data tone.
3. Couple the terminal to the telephone line:
a. For terminals with acoustic couplers, place the telephone handset firmly in the coupler, orienting it as marked on the coupler.
b. For modems (Be11 103, 113, 212A), depress the DATA button.
4. The following message will appear at your terminal (although it will appear garbled at speeds other than 30ρ or 1200 bps):

PLEASE TYPE YOUR TERMINAL IDENTIFIER
5. Type your terminal identifying character (type the letter A).
6. The computer system will then display:
-XXXX-YYY-
PL.EASE LOG IN:
(XXXX is a code for the node to which you are connected, and YYY is the port on that node.)

NOTE: This message sent from the system has no parity. If your terminal is checking for parity, this message may be garbled.
Respond by typing IBMPEA1, followed by a carriage return.
To suppress echoing of input characters, a CONTROL H is typed before entering IBMEPA1.
7. The computer system will prompt for the password associated with IBMPEA1:

PASSWORD :
Respond by typing the correct password, followed by a carriage return. (Passwords are not echoed.)
The password for IBMEPA1 is:
NCC
8. Once the connection is made to the computer, you will receive:

P\#\#\# (\#\#\# is a code for the computer port) and:
IBM IS ON LINE
CONNECTING TO TSO
The following steps describe the procedure for connecting with TSO:

1. After recefving the message IBM IS ON LINE, the user must enter:
TSO (followed by a carriage return)
2. After receiving the message "enter LOGON for TSO orWylbur terminal type", the user must enter:LOGON
or
L.OGON userid/password
to initiate a TSO session.
An example of the TSO connecting procedure is presented below:
1 please type your terminal identifierA2
3 please log in:IEMEPAl;NCC 45 IRMI IS ON JINE
7 enter LOGONLOCON-4 89 IKJ56700A ENTER USERID -EPATFP -11 ENIER CURRENTI PASSWRRD FOR EPATFP-$: \mathrm{XXXXXX} \rightarrow-12$13 READY
Notes for TSO Example Steps
3. Computer prompt/response
4. User selects terminal identifier
5. Computer prompt/response
6. User keys in CTRL H immediately followed by IBMEPA1; NCC to select IBM system
7. Computer response
8. User selects TSO
9. Computer prompt
10. User keys in LOGON to start TSO session $<$9. Computer prompt
11. User enters EPA user-ID
12. Computer prompt
13. User enter a password
14. Computer responds with READY

CONNECTING TO WYLBUR

The following steps describe the procedure for connecting with WYLBUR:

1. After receiving the message IBM IS ON LINE, the user must enter:

WYL (followed by a carriage return)
2. After receiving the message "enter LOGON for TSO or Wylbur terminal type", the user must enter the appropriate WYLBUR terminal type. A single carriage return will provide, as a default, MODEL 37/38 TELETYPE.
An example of the WYLBUR connecting procedure is presented below:
1 \{lease type your teminal identifiera
$-1011-012-\quad$ - 2
$3\left\{\begin{array}{l}\text { please } 10 \mathrm{~g} \text { in:IRMERAI; } 24 \\ \mathrm{p} 24\end{array}\right.$
5 IBMI IS ON LINE
WKL - 6
7 enter wylbur teminal type
MODES 37/38 TEIETYPE
9
WTIBUR AT EPA NCC-IBM PORT 66 TUESDAY 07/28/81 12:23:36 P.M.

```
UUSERID ? EPATFP
10
(PASSWORD? XXXXXX)
(SPECIFY GLOBAL FORMAT FOR SAVE COMMANDS
12{ REPLY - DEFAULI, EDITT, TSO, CARD, OR PRINT
FORMAT?CARD -4-_m_13
14{"LOGON" NOT FOUND IN "WYLIB" ON USER60
COMMAND ?
```

```
Notes for WYLBUR Example Steps
1. Computer prompt
2. User selects terminal identifier
3. Computer prompt/response
4. User keys in CTRL \(H\) immediately followed by IBMEPA1; NCC to select. IBM system
5. Computer response
6. User selects WYL (WYLBUR)
7. Computer response
8. User selects WYLBUR terminal type
9. Computer response
10. Computer prompt
11. User keys in EPA user-ID, account, and password
12. Computer response/prompt
13. User selects save format
14. Computer response/prompt
LOGOFF PROCEDURES
After a terminal session is completed under TSO or WYLBUR, the user initiates logoff procedures by typing "LOGOFF". If the user is in WYLBUB, the user must also clear the workspace prior to terminating a terminal session. Thereoff, the complete logoff command under WYLBUR is "LOGOFF CLEAR".
After a TSO or WYLBUR LOGOFF, the user may simply hand up or initfate a new TSO or WYLBUR session. To initiate a new TSO or WYLBUR session, type TSO or WYL and proceed accordingly.
```


[^0]: These include the all-engine EAS at 35 feet $H A A$ (V35) and the one-engine out takeoff safety EAS (V2).

[^1]: *If the program is terminated, the system with respond with "READY".
 **A listing of the FLYPRO. TEXT file is obtained using the IBM WYLBUR system. The logon procedures for accessing WYLBUR are discussed in Appendix B.

